Mercurial > libavcodec.hg
annotate jrevdct.c @ 1487:dfd69e00951c libavcodec
PowerPC warnings & optimisations patch by (Dan Christiansen <danchr at daimi dot au dot dk>)
| author | michaelni |
|---|---|
| date | Sun, 28 Sep 2003 22:53:25 +0000 |
| parents | 1e39f273ecd6 |
| children | 7e0b2e86afa9 |
| rev | line source |
|---|---|
| 0 | 1 /* |
| 2 * jrevdct.c | |
| 3 * | |
| 4 * Copyright (C) 1991, 1992, Thomas G. Lane. | |
| 5 * This file is part of the Independent JPEG Group's software. | |
| 6 * For conditions of distribution and use, see the accompanying README file. | |
| 7 * | |
| 8 * This file contains the basic inverse-DCT transformation subroutine. | |
| 9 * | |
| 10 * This implementation is based on an algorithm described in | |
| 11 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT | |
| 12 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, | |
| 13 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. | |
| 14 * The primary algorithm described there uses 11 multiplies and 29 adds. | |
| 15 * We use their alternate method with 12 multiplies and 32 adds. | |
| 16 * The advantage of this method is that no data path contains more than one | |
| 17 * multiplication; this allows a very simple and accurate implementation in | |
| 18 * scaled fixed-point arithmetic, with a minimal number of shifts. | |
| 19 * | |
| 20 * I've made lots of modifications to attempt to take advantage of the | |
| 21 * sparse nature of the DCT matrices we're getting. Although the logic | |
| 22 * is cumbersome, it's straightforward and the resulting code is much | |
| 23 * faster. | |
| 24 * | |
| 25 * A better way to do this would be to pass in the DCT block as a sparse | |
| 26 * matrix, perhaps with the difference cases encoded. | |
| 27 */ | |
| 1106 | 28 |
| 29 /** | |
| 30 * @file jrevdct.c | |
| 31 * Independent JPEG Group's LLM idct. | |
| 32 */ | |
| 33 | |
| 0 | 34 #include "common.h" |
| 35 #include "dsputil.h" | |
| 36 | |
| 37 #define EIGHT_BIT_SAMPLES | |
| 38 | |
| 39 #define DCTSIZE 8 | |
| 40 #define DCTSIZE2 64 | |
| 41 | |
| 42 #define GLOBAL | |
| 43 | |
| 44 #define RIGHT_SHIFT(x, n) ((x) >> (n)) | |
| 45 | |
| 46 typedef DCTELEM DCTBLOCK[DCTSIZE2]; | |
| 47 | |
| 48 #define CONST_BITS 13 | |
| 49 | |
| 50 /* | |
| 51 * This routine is specialized to the case DCTSIZE = 8. | |
| 52 */ | |
| 53 | |
| 54 #if DCTSIZE != 8 | |
| 55 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |
| 56 #endif | |
| 57 | |
| 58 | |
| 59 /* | |
| 60 * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT | |
| 61 * on each column. Direct algorithms are also available, but they are | |
| 62 * much more complex and seem not to be any faster when reduced to code. | |
| 63 * | |
| 64 * The poop on this scaling stuff is as follows: | |
| 65 * | |
| 66 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) | |
| 67 * larger than the true IDCT outputs. The final outputs are therefore | |
| 68 * a factor of N larger than desired; since N=8 this can be cured by | |
| 69 * a simple right shift at the end of the algorithm. The advantage of | |
| 70 * this arrangement is that we save two multiplications per 1-D IDCT, | |
| 71 * because the y0 and y4 inputs need not be divided by sqrt(N). | |
| 72 * | |
| 73 * We have to do addition and subtraction of the integer inputs, which | |
| 74 * is no problem, and multiplication by fractional constants, which is | |
| 75 * a problem to do in integer arithmetic. We multiply all the constants | |
| 76 * by CONST_SCALE and convert them to integer constants (thus retaining | |
| 77 * CONST_BITS bits of precision in the constants). After doing a | |
| 78 * multiplication we have to divide the product by CONST_SCALE, with proper | |
| 79 * rounding, to produce the correct output. This division can be done | |
| 80 * cheaply as a right shift of CONST_BITS bits. We postpone shifting | |
| 81 * as long as possible so that partial sums can be added together with | |
| 82 * full fractional precision. | |
| 83 * | |
| 84 * The outputs of the first pass are scaled up by PASS1_BITS bits so that | |
| 85 * they are represented to better-than-integral precision. These outputs | |
| 86 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word | |
| 87 * with the recommended scaling. (To scale up 12-bit sample data further, an | |
| 88 * intermediate int32 array would be needed.) | |
| 89 * | |
| 90 * To avoid overflow of the 32-bit intermediate results in pass 2, we must | |
| 91 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis | |
| 92 * shows that the values given below are the most effective. | |
| 93 */ | |
| 94 | |
| 95 #ifdef EIGHT_BIT_SAMPLES | |
| 96 #define PASS1_BITS 2 | |
| 97 #else | |
| 98 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ | |
| 99 #endif | |
| 100 | |
| 1064 | 101 #define ONE ((int32_t) 1) |
| 0 | 102 |
| 103 #define CONST_SCALE (ONE << CONST_BITS) | |
| 104 | |
| 105 /* Convert a positive real constant to an integer scaled by CONST_SCALE. | |
| 106 * IMPORTANT: if your compiler doesn't do this arithmetic at compile time, | |
| 107 * you will pay a significant penalty in run time. In that case, figure | |
| 108 * the correct integer constant values and insert them by hand. | |
| 109 */ | |
| 110 | |
| 111 /* Actually FIX is no longer used, we precomputed them all */ | |
| 1064 | 112 #define FIX(x) ((int32_t) ((x) * CONST_SCALE + 0.5)) |
| 0 | 113 |
| 1064 | 114 /* Descale and correctly round an int32_t value that's scaled by N bits. |
| 0 | 115 * We assume RIGHT_SHIFT rounds towards minus infinity, so adding |
| 116 * the fudge factor is correct for either sign of X. | |
| 117 */ | |
| 118 | |
| 119 #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) | |
| 120 | |
| 1064 | 121 /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result. |
| 0 | 122 * For 8-bit samples with the recommended scaling, all the variable |
| 123 * and constant values involved are no more than 16 bits wide, so a | |
| 124 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply; | |
| 125 * this provides a useful speedup on many machines. | |
| 126 * There is no way to specify a 16x16->32 multiply in portable C, but | |
| 127 * some C compilers will do the right thing if you provide the correct | |
| 128 * combination of casts. | |
| 129 * NB: for 12-bit samples, a full 32-bit multiplication will be needed. | |
| 130 */ | |
| 131 | |
| 132 #ifdef EIGHT_BIT_SAMPLES | |
| 133 #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ | |
| 1064 | 134 #define MULTIPLY(var,const) (((int16_t) (var)) * ((int16_t) (const))) |
| 0 | 135 #endif |
| 136 #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ | |
| 1064 | 137 #define MULTIPLY(var,const) (((int16_t) (var)) * ((int32_t) (const))) |
| 0 | 138 #endif |
| 139 #endif | |
| 140 | |
| 141 #ifndef MULTIPLY /* default definition */ | |
| 142 #define MULTIPLY(var,const) ((var) * (const)) | |
| 143 #endif | |
| 144 | |
| 145 | |
| 146 /* | |
| 147 Unlike our decoder where we approximate the FIXes, we need to use exact | |
| 148 ones here or successive P-frames will drift too much with Reference frame coding | |
| 149 */ | |
| 150 #define FIX_0_211164243 1730 | |
| 151 #define FIX_0_275899380 2260 | |
| 152 #define FIX_0_298631336 2446 | |
| 153 #define FIX_0_390180644 3196 | |
| 154 #define FIX_0_509795579 4176 | |
| 155 #define FIX_0_541196100 4433 | |
| 156 #define FIX_0_601344887 4926 | |
| 157 #define FIX_0_765366865 6270 | |
| 158 #define FIX_0_785694958 6436 | |
| 159 #define FIX_0_899976223 7373 | |
| 160 #define FIX_1_061594337 8697 | |
| 161 #define FIX_1_111140466 9102 | |
| 162 #define FIX_1_175875602 9633 | |
| 163 #define FIX_1_306562965 10703 | |
| 164 #define FIX_1_387039845 11363 | |
| 165 #define FIX_1_451774981 11893 | |
| 166 #define FIX_1_501321110 12299 | |
| 167 #define FIX_1_662939225 13623 | |
| 168 #define FIX_1_847759065 15137 | |
| 169 #define FIX_1_961570560 16069 | |
| 170 #define FIX_2_053119869 16819 | |
| 171 #define FIX_2_172734803 17799 | |
| 172 #define FIX_2_562915447 20995 | |
| 173 #define FIX_3_072711026 25172 | |
| 174 | |
| 175 /* | |
| 176 * Perform the inverse DCT on one block of coefficients. | |
| 177 */ | |
| 178 | |
| 179 void j_rev_dct(DCTBLOCK data) | |
| 180 { | |
| 1064 | 181 int32_t tmp0, tmp1, tmp2, tmp3; |
| 182 int32_t tmp10, tmp11, tmp12, tmp13; | |
| 183 int32_t z1, z2, z3, z4, z5; | |
| 184 int32_t d0, d1, d2, d3, d4, d5, d6, d7; | |
| 0 | 185 register DCTELEM *dataptr; |
| 186 int rowctr; | |
| 187 | |
| 188 /* Pass 1: process rows. */ | |
| 189 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ | |
| 190 /* furthermore, we scale the results by 2**PASS1_BITS. */ | |
| 191 | |
| 192 dataptr = data; | |
| 193 | |
| 194 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { | |
| 195 /* Due to quantization, we will usually find that many of the input | |
| 196 * coefficients are zero, especially the AC terms. We can exploit this | |
| 197 * by short-circuiting the IDCT calculation for any row in which all | |
| 198 * the AC terms are zero. In that case each output is equal to the | |
| 199 * DC coefficient (with scale factor as needed). | |
| 200 * With typical images and quantization tables, half or more of the | |
| 201 * row DCT calculations can be simplified this way. | |
| 202 */ | |
| 203 | |
| 204 register int *idataptr = (int*)dataptr; | |
| 205 | |
|
36
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
206 /* WARNING: we do the same permutation as MMX idct to simplify the |
|
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
207 video core */ |
| 0 | 208 d0 = dataptr[0]; |
|
36
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
209 d2 = dataptr[1]; |
|
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
210 d4 = dataptr[2]; |
|
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
211 d6 = dataptr[3]; |
|
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
212 d1 = dataptr[4]; |
|
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
213 d3 = dataptr[5]; |
|
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
214 d5 = dataptr[6]; |
| 0 | 215 d7 = dataptr[7]; |
| 216 | |
|
36
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
217 if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) { |
| 0 | 218 /* AC terms all zero */ |
| 219 if (d0) { | |
| 220 /* Compute a 32 bit value to assign. */ | |
| 221 DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS); | |
| 222 register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000); | |
| 223 | |
| 224 idataptr[0] = v; | |
| 225 idataptr[1] = v; | |
| 226 idataptr[2] = v; | |
| 227 idataptr[3] = v; | |
| 228 } | |
| 229 | |
| 230 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 231 continue; | |
| 232 } | |
| 233 | |
| 234 /* Even part: reverse the even part of the forward DCT. */ | |
| 235 /* The rotator is sqrt(2)*c(-6). */ | |
| 236 { | |
| 237 if (d6) { | |
| 238 if (d4) { | |
| 239 if (d2) { | |
| 240 if (d0) { | |
| 241 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ | |
| 242 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 243 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 244 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 245 | |
| 246 tmp0 = (d0 + d4) << CONST_BITS; | |
| 247 tmp1 = (d0 - d4) << CONST_BITS; | |
| 248 | |
| 249 tmp10 = tmp0 + tmp3; | |
| 250 tmp13 = tmp0 - tmp3; | |
| 251 tmp11 = tmp1 + tmp2; | |
| 252 tmp12 = tmp1 - tmp2; | |
| 253 } else { | |
| 254 /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */ | |
| 255 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 256 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 257 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 258 | |
| 259 tmp0 = d4 << CONST_BITS; | |
| 260 | |
| 261 tmp10 = tmp0 + tmp3; | |
| 262 tmp13 = tmp0 - tmp3; | |
| 263 tmp11 = tmp2 - tmp0; | |
| 264 tmp12 = -(tmp0 + tmp2); | |
| 265 } | |
| 266 } else { | |
| 267 if (d0) { | |
| 268 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ | |
| 269 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 270 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 271 | |
| 272 tmp0 = (d0 + d4) << CONST_BITS; | |
| 273 tmp1 = (d0 - d4) << CONST_BITS; | |
| 274 | |
| 275 tmp10 = tmp0 + tmp3; | |
| 276 tmp13 = tmp0 - tmp3; | |
| 277 tmp11 = tmp1 + tmp2; | |
| 278 tmp12 = tmp1 - tmp2; | |
| 279 } else { | |
| 280 /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */ | |
| 281 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 282 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 283 | |
| 284 tmp0 = d4 << CONST_BITS; | |
| 285 | |
| 286 tmp10 = tmp0 + tmp3; | |
| 287 tmp13 = tmp0 - tmp3; | |
| 288 tmp11 = tmp2 - tmp0; | |
| 289 tmp12 = -(tmp0 + tmp2); | |
| 290 } | |
| 291 } | |
| 292 } else { | |
| 293 if (d2) { | |
| 294 if (d0) { | |
| 295 /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */ | |
| 296 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 297 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 298 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 299 | |
| 300 tmp0 = d0 << CONST_BITS; | |
| 301 | |
| 302 tmp10 = tmp0 + tmp3; | |
| 303 tmp13 = tmp0 - tmp3; | |
| 304 tmp11 = tmp0 + tmp2; | |
| 305 tmp12 = tmp0 - tmp2; | |
| 306 } else { | |
| 307 /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */ | |
| 308 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 309 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 310 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 311 | |
| 312 tmp10 = tmp3; | |
| 313 tmp13 = -tmp3; | |
| 314 tmp11 = tmp2; | |
| 315 tmp12 = -tmp2; | |
| 316 } | |
| 317 } else { | |
| 318 if (d0) { | |
| 319 /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */ | |
| 320 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 321 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 322 | |
| 323 tmp0 = d0 << CONST_BITS; | |
| 324 | |
| 325 tmp10 = tmp0 + tmp3; | |
| 326 tmp13 = tmp0 - tmp3; | |
| 327 tmp11 = tmp0 + tmp2; | |
| 328 tmp12 = tmp0 - tmp2; | |
| 329 } else { | |
| 330 /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */ | |
| 331 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 332 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 333 | |
| 334 tmp10 = tmp3; | |
| 335 tmp13 = -tmp3; | |
| 336 tmp11 = tmp2; | |
| 337 tmp12 = -tmp2; | |
| 338 } | |
| 339 } | |
| 340 } | |
| 341 } else { | |
| 342 if (d4) { | |
| 343 if (d2) { | |
| 344 if (d0) { | |
| 345 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ | |
| 346 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 347 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 348 | |
| 349 tmp0 = (d0 + d4) << CONST_BITS; | |
| 350 tmp1 = (d0 - d4) << CONST_BITS; | |
| 351 | |
| 352 tmp10 = tmp0 + tmp3; | |
| 353 tmp13 = tmp0 - tmp3; | |
| 354 tmp11 = tmp1 + tmp2; | |
| 355 tmp12 = tmp1 - tmp2; | |
| 356 } else { | |
| 357 /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */ | |
| 358 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 359 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 360 | |
| 361 tmp0 = d4 << CONST_BITS; | |
| 362 | |
| 363 tmp10 = tmp0 + tmp3; | |
| 364 tmp13 = tmp0 - tmp3; | |
| 365 tmp11 = tmp2 - tmp0; | |
| 366 tmp12 = -(tmp0 + tmp2); | |
| 367 } | |
| 368 } else { | |
| 369 if (d0) { | |
| 370 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ | |
| 371 tmp10 = tmp13 = (d0 + d4) << CONST_BITS; | |
| 372 tmp11 = tmp12 = (d0 - d4) << CONST_BITS; | |
| 373 } else { | |
| 374 /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */ | |
| 375 tmp10 = tmp13 = d4 << CONST_BITS; | |
| 376 tmp11 = tmp12 = -tmp10; | |
| 377 } | |
| 378 } | |
| 379 } else { | |
| 380 if (d2) { | |
| 381 if (d0) { | |
| 382 /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */ | |
| 383 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 384 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 385 | |
| 386 tmp0 = d0 << CONST_BITS; | |
| 387 | |
| 388 tmp10 = tmp0 + tmp3; | |
| 389 tmp13 = tmp0 - tmp3; | |
| 390 tmp11 = tmp0 + tmp2; | |
| 391 tmp12 = tmp0 - tmp2; | |
| 392 } else { | |
| 393 /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */ | |
| 394 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 395 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 396 | |
| 397 tmp10 = tmp3; | |
| 398 tmp13 = -tmp3; | |
| 399 tmp11 = tmp2; | |
| 400 tmp12 = -tmp2; | |
| 401 } | |
| 402 } else { | |
| 403 if (d0) { | |
| 404 /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */ | |
| 405 tmp10 = tmp13 = tmp11 = tmp12 = d0 << CONST_BITS; | |
| 406 } else { | |
| 407 /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */ | |
| 408 tmp10 = tmp13 = tmp11 = tmp12 = 0; | |
| 409 } | |
| 410 } | |
| 411 } | |
| 412 } | |
| 413 | |
| 414 /* Odd part per figure 8; the matrix is unitary and hence its | |
| 415 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. | |
| 416 */ | |
| 417 | |
| 418 if (d7) { | |
| 419 if (d5) { | |
| 420 if (d3) { | |
| 421 if (d1) { | |
| 422 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ | |
| 423 z1 = d7 + d1; | |
| 424 z2 = d5 + d3; | |
| 425 z3 = d7 + d3; | |
| 426 z4 = d5 + d1; | |
| 427 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); | |
| 428 | |
| 429 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 430 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 431 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 432 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 433 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
| 434 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
| 435 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
| 436 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
| 437 | |
| 438 z3 += z5; | |
| 439 z4 += z5; | |
| 440 | |
| 441 tmp0 += z1 + z3; | |
| 442 tmp1 += z2 + z4; | |
| 443 tmp2 += z2 + z3; | |
| 444 tmp3 += z1 + z4; | |
| 445 } else { | |
| 446 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ | |
| 447 z2 = d5 + d3; | |
| 448 z3 = d7 + d3; | |
| 449 z5 = MULTIPLY(z3 + d5, FIX_1_175875602); | |
| 450 | |
| 451 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 452 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 453 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 454 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
| 455 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
| 456 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
| 457 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
| 458 | |
| 459 z3 += z5; | |
| 460 z4 += z5; | |
| 461 | |
| 462 tmp0 += z1 + z3; | |
| 463 tmp1 += z2 + z4; | |
| 464 tmp2 += z2 + z3; | |
| 465 tmp3 = z1 + z4; | |
| 466 } | |
| 467 } else { | |
| 468 if (d1) { | |
| 469 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ | |
| 470 z1 = d7 + d1; | |
| 471 z4 = d5 + d1; | |
| 472 z5 = MULTIPLY(d7 + z4, FIX_1_175875602); | |
| 473 | |
| 474 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 475 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 476 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 477 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
| 478 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
| 479 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
| 480 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
| 481 | |
| 482 z3 += z5; | |
| 483 z4 += z5; | |
| 484 | |
| 485 tmp0 += z1 + z3; | |
| 486 tmp1 += z2 + z4; | |
| 487 tmp2 = z2 + z3; | |
| 488 tmp3 += z1 + z4; | |
| 489 } else { | |
| 490 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ | |
| 491 tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
| 492 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
| 493 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
| 494 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
| 495 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
| 496 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
| 497 z5 = MULTIPLY(d5 + d7, FIX_1_175875602); | |
| 498 | |
| 499 z3 += z5; | |
| 500 z4 += z5; | |
| 501 | |
| 502 tmp0 += z3; | |
| 503 tmp1 += z4; | |
| 504 tmp2 = z2 + z3; | |
| 505 tmp3 = z1 + z4; | |
| 506 } | |
| 507 } | |
| 508 } else { | |
| 509 if (d3) { | |
| 510 if (d1) { | |
| 511 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ | |
| 512 z1 = d7 + d1; | |
| 513 z3 = d7 + d3; | |
| 514 z5 = MULTIPLY(z3 + d1, FIX_1_175875602); | |
| 515 | |
| 516 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 517 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 518 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 519 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
| 520 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
| 521 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
| 522 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
| 523 | |
| 524 z3 += z5; | |
| 525 z4 += z5; | |
| 526 | |
| 527 tmp0 += z1 + z3; | |
| 528 tmp1 = z2 + z4; | |
| 529 tmp2 += z2 + z3; | |
| 530 tmp3 += z1 + z4; | |
| 531 } else { | |
| 532 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ | |
| 533 z3 = d7 + d3; | |
| 534 | |
| 535 tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
| 536 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
| 537 tmp2 = MULTIPLY(d3, FIX_0_509795579); | |
| 538 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
| 539 z5 = MULTIPLY(z3, FIX_1_175875602); | |
| 540 z3 = MULTIPLY(-z3, FIX_0_785694958); | |
| 541 | |
| 542 tmp0 += z3; | |
| 543 tmp1 = z2 + z5; | |
| 544 tmp2 += z3; | |
| 545 tmp3 = z1 + z5; | |
| 546 } | |
| 547 } else { | |
| 548 if (d1) { | |
| 549 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ | |
| 550 z1 = d7 + d1; | |
| 551 z5 = MULTIPLY(z1, FIX_1_175875602); | |
| 552 | |
| 553 z1 = MULTIPLY(z1, FIX_0_275899380); | |
| 554 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
| 555 tmp0 = MULTIPLY(-d7, FIX_1_662939225); | |
| 556 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
| 557 tmp3 = MULTIPLY(d1, FIX_1_111140466); | |
| 558 | |
| 559 tmp0 += z1; | |
| 560 tmp1 = z4 + z5; | |
| 561 tmp2 = z3 + z5; | |
| 562 tmp3 += z1; | |
| 563 } else { | |
| 564 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ | |
| 565 tmp0 = MULTIPLY(-d7, FIX_1_387039845); | |
| 566 tmp1 = MULTIPLY(d7, FIX_1_175875602); | |
| 567 tmp2 = MULTIPLY(-d7, FIX_0_785694958); | |
| 568 tmp3 = MULTIPLY(d7, FIX_0_275899380); | |
| 569 } | |
| 570 } | |
| 571 } | |
| 572 } else { | |
| 573 if (d5) { | |
| 574 if (d3) { | |
| 575 if (d1) { | |
| 576 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ | |
| 577 z2 = d5 + d3; | |
| 578 z4 = d5 + d1; | |
| 579 z5 = MULTIPLY(d3 + z4, FIX_1_175875602); | |
| 580 | |
| 581 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 582 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 583 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 584 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
| 585 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
| 586 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
| 587 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
| 588 | |
| 589 z3 += z5; | |
| 590 z4 += z5; | |
| 591 | |
| 592 tmp0 = z1 + z3; | |
| 593 tmp1 += z2 + z4; | |
| 594 tmp2 += z2 + z3; | |
| 595 tmp3 += z1 + z4; | |
| 596 } else { | |
| 597 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ | |
| 598 z2 = d5 + d3; | |
| 599 | |
| 600 z5 = MULTIPLY(z2, FIX_1_175875602); | |
| 601 tmp1 = MULTIPLY(d5, FIX_1_662939225); | |
| 602 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
| 603 z2 = MULTIPLY(-z2, FIX_1_387039845); | |
| 604 tmp2 = MULTIPLY(d3, FIX_1_111140466); | |
| 605 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
| 606 | |
| 607 tmp0 = z3 + z5; | |
| 608 tmp1 += z2; | |
| 609 tmp2 += z2; | |
| 610 tmp3 = z4 + z5; | |
| 611 } | |
| 612 } else { | |
| 613 if (d1) { | |
| 614 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ | |
| 615 z4 = d5 + d1; | |
| 616 | |
| 617 z5 = MULTIPLY(z4, FIX_1_175875602); | |
| 618 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
| 619 tmp3 = MULTIPLY(d1, FIX_0_601344887); | |
| 620 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
| 621 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
| 622 z4 = MULTIPLY(z4, FIX_0_785694958); | |
| 623 | |
| 624 tmp0 = z1 + z5; | |
| 625 tmp1 += z4; | |
| 626 tmp2 = z2 + z5; | |
| 627 tmp3 += z4; | |
| 628 } else { | |
| 629 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ | |
| 630 tmp0 = MULTIPLY(d5, FIX_1_175875602); | |
| 631 tmp1 = MULTIPLY(d5, FIX_0_275899380); | |
| 632 tmp2 = MULTIPLY(-d5, FIX_1_387039845); | |
| 633 tmp3 = MULTIPLY(d5, FIX_0_785694958); | |
| 634 } | |
| 635 } | |
| 636 } else { | |
| 637 if (d3) { | |
| 638 if (d1) { | |
| 639 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ | |
| 640 z5 = d1 + d3; | |
| 641 tmp3 = MULTIPLY(d1, FIX_0_211164243); | |
| 642 tmp2 = MULTIPLY(-d3, FIX_1_451774981); | |
| 643 z1 = MULTIPLY(d1, FIX_1_061594337); | |
| 644 z2 = MULTIPLY(-d3, FIX_2_172734803); | |
| 645 z4 = MULTIPLY(z5, FIX_0_785694958); | |
| 646 z5 = MULTIPLY(z5, FIX_1_175875602); | |
| 647 | |
| 648 tmp0 = z1 - z4; | |
| 649 tmp1 = z2 + z4; | |
| 650 tmp2 += z5; | |
| 651 tmp3 += z5; | |
| 652 } else { | |
| 653 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ | |
| 654 tmp0 = MULTIPLY(-d3, FIX_0_785694958); | |
| 655 tmp1 = MULTIPLY(-d3, FIX_1_387039845); | |
| 656 tmp2 = MULTIPLY(-d3, FIX_0_275899380); | |
| 657 tmp3 = MULTIPLY(d3, FIX_1_175875602); | |
| 658 } | |
| 659 } else { | |
| 660 if (d1) { | |
| 661 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ | |
| 662 tmp0 = MULTIPLY(d1, FIX_0_275899380); | |
| 663 tmp1 = MULTIPLY(d1, FIX_0_785694958); | |
| 664 tmp2 = MULTIPLY(d1, FIX_1_175875602); | |
| 665 tmp3 = MULTIPLY(d1, FIX_1_387039845); | |
| 666 } else { | |
| 667 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ | |
| 668 tmp0 = tmp1 = tmp2 = tmp3 = 0; | |
| 669 } | |
| 670 } | |
| 671 } | |
| 672 } | |
| 673 } | |
| 674 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
| 675 | |
| 676 dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); | |
| 677 dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); | |
| 678 dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); | |
| 679 dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); | |
| 680 dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); | |
| 681 dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); | |
| 682 dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); | |
| 683 dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); | |
| 684 | |
| 685 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 686 } | |
| 687 | |
| 688 /* Pass 2: process columns. */ | |
| 689 /* Note that we must descale the results by a factor of 8 == 2**3, */ | |
| 690 /* and also undo the PASS1_BITS scaling. */ | |
| 691 | |
| 692 dataptr = data; | |
| 693 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { | |
| 694 /* Columns of zeroes can be exploited in the same way as we did with rows. | |
| 695 * However, the row calculation has created many nonzero AC terms, so the | |
| 696 * simplification applies less often (typically 5% to 10% of the time). | |
| 697 * On machines with very fast multiplication, it's possible that the | |
| 698 * test takes more time than it's worth. In that case this section | |
| 699 * may be commented out. | |
| 700 */ | |
| 701 | |
| 702 d0 = dataptr[DCTSIZE*0]; | |
| 703 d1 = dataptr[DCTSIZE*1]; | |
| 704 d2 = dataptr[DCTSIZE*2]; | |
| 705 d3 = dataptr[DCTSIZE*3]; | |
| 706 d4 = dataptr[DCTSIZE*4]; | |
| 707 d5 = dataptr[DCTSIZE*5]; | |
| 708 d6 = dataptr[DCTSIZE*6]; | |
| 709 d7 = dataptr[DCTSIZE*7]; | |
| 710 | |
| 711 /* Even part: reverse the even part of the forward DCT. */ | |
| 712 /* The rotator is sqrt(2)*c(-6). */ | |
| 713 if (d6) { | |
| 714 if (d4) { | |
| 715 if (d2) { | |
| 716 if (d0) { | |
| 717 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ | |
| 718 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 719 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 720 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 721 | |
| 722 tmp0 = (d0 + d4) << CONST_BITS; | |
| 723 tmp1 = (d0 - d4) << CONST_BITS; | |
| 724 | |
| 725 tmp10 = tmp0 + tmp3; | |
| 726 tmp13 = tmp0 - tmp3; | |
| 727 tmp11 = tmp1 + tmp2; | |
| 728 tmp12 = tmp1 - tmp2; | |
| 729 } else { | |
| 730 /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */ | |
| 731 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 732 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 733 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 734 | |
| 735 tmp0 = d4 << CONST_BITS; | |
| 736 | |
| 737 tmp10 = tmp0 + tmp3; | |
| 738 tmp13 = tmp0 - tmp3; | |
| 739 tmp11 = tmp2 - tmp0; | |
| 740 tmp12 = -(tmp0 + tmp2); | |
| 741 } | |
| 742 } else { | |
| 743 if (d0) { | |
| 744 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ | |
| 745 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 746 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 747 | |
| 748 tmp0 = (d0 + d4) << CONST_BITS; | |
| 749 tmp1 = (d0 - d4) << CONST_BITS; | |
| 750 | |
| 751 tmp10 = tmp0 + tmp3; | |
| 752 tmp13 = tmp0 - tmp3; | |
| 753 tmp11 = tmp1 + tmp2; | |
| 754 tmp12 = tmp1 - tmp2; | |
| 755 } else { | |
| 756 /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */ | |
| 757 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 758 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 759 | |
| 760 tmp0 = d4 << CONST_BITS; | |
| 761 | |
| 762 tmp10 = tmp0 + tmp3; | |
| 763 tmp13 = tmp0 - tmp3; | |
| 764 tmp11 = tmp2 - tmp0; | |
| 765 tmp12 = -(tmp0 + tmp2); | |
| 766 } | |
| 767 } | |
| 768 } else { | |
| 769 if (d2) { | |
| 770 if (d0) { | |
| 771 /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */ | |
| 772 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 773 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 774 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 775 | |
| 776 tmp0 = d0 << CONST_BITS; | |
| 777 | |
| 778 tmp10 = tmp0 + tmp3; | |
| 779 tmp13 = tmp0 - tmp3; | |
| 780 tmp11 = tmp0 + tmp2; | |
| 781 tmp12 = tmp0 - tmp2; | |
| 782 } else { | |
| 783 /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */ | |
| 784 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 785 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 786 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 787 | |
| 788 tmp10 = tmp3; | |
| 789 tmp13 = -tmp3; | |
| 790 tmp11 = tmp2; | |
| 791 tmp12 = -tmp2; | |
| 792 } | |
| 793 } else { | |
| 794 if (d0) { | |
| 795 /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */ | |
| 796 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 797 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 798 | |
| 799 tmp0 = d0 << CONST_BITS; | |
| 800 | |
| 801 tmp10 = tmp0 + tmp3; | |
| 802 tmp13 = tmp0 - tmp3; | |
| 803 tmp11 = tmp0 + tmp2; | |
| 804 tmp12 = tmp0 - tmp2; | |
| 805 } else { | |
| 806 /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */ | |
| 807 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 808 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 809 | |
| 810 tmp10 = tmp3; | |
| 811 tmp13 = -tmp3; | |
| 812 tmp11 = tmp2; | |
| 813 tmp12 = -tmp2; | |
| 814 } | |
| 815 } | |
| 816 } | |
| 817 } else { | |
| 818 if (d4) { | |
| 819 if (d2) { | |
| 820 if (d0) { | |
| 821 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ | |
| 822 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 823 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 824 | |
| 825 tmp0 = (d0 + d4) << CONST_BITS; | |
| 826 tmp1 = (d0 - d4) << CONST_BITS; | |
| 827 | |
| 828 tmp10 = tmp0 + tmp3; | |
| 829 tmp13 = tmp0 - tmp3; | |
| 830 tmp11 = tmp1 + tmp2; | |
| 831 tmp12 = tmp1 - tmp2; | |
| 832 } else { | |
| 833 /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */ | |
| 834 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 835 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 836 | |
| 837 tmp0 = d4 << CONST_BITS; | |
| 838 | |
| 839 tmp10 = tmp0 + tmp3; | |
| 840 tmp13 = tmp0 - tmp3; | |
| 841 tmp11 = tmp2 - tmp0; | |
| 842 tmp12 = -(tmp0 + tmp2); | |
| 843 } | |
| 844 } else { | |
| 845 if (d0) { | |
| 846 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ | |
| 847 tmp10 = tmp13 = (d0 + d4) << CONST_BITS; | |
| 848 tmp11 = tmp12 = (d0 - d4) << CONST_BITS; | |
| 849 } else { | |
| 850 /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */ | |
| 851 tmp10 = tmp13 = d4 << CONST_BITS; | |
| 852 tmp11 = tmp12 = -tmp10; | |
| 853 } | |
| 854 } | |
| 855 } else { | |
| 856 if (d2) { | |
| 857 if (d0) { | |
| 858 /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */ | |
| 859 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 860 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 861 | |
| 862 tmp0 = d0 << CONST_BITS; | |
| 863 | |
| 864 tmp10 = tmp0 + tmp3; | |
| 865 tmp13 = tmp0 - tmp3; | |
| 866 tmp11 = tmp0 + tmp2; | |
| 867 tmp12 = tmp0 - tmp2; | |
| 868 } else { | |
| 869 /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */ | |
| 870 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 871 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 872 | |
| 873 tmp10 = tmp3; | |
| 874 tmp13 = -tmp3; | |
| 875 tmp11 = tmp2; | |
| 876 tmp12 = -tmp2; | |
| 877 } | |
| 878 } else { | |
| 879 if (d0) { | |
| 880 /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */ | |
| 881 tmp10 = tmp13 = tmp11 = tmp12 = d0 << CONST_BITS; | |
| 882 } else { | |
| 883 /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */ | |
| 884 tmp10 = tmp13 = tmp11 = tmp12 = 0; | |
| 885 } | |
| 886 } | |
| 887 } | |
| 888 } | |
| 889 | |
| 890 /* Odd part per figure 8; the matrix is unitary and hence its | |
| 891 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. | |
| 892 */ | |
| 893 if (d7) { | |
| 894 if (d5) { | |
| 895 if (d3) { | |
| 896 if (d1) { | |
| 897 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ | |
| 898 z1 = d7 + d1; | |
| 899 z2 = d5 + d3; | |
| 900 z3 = d7 + d3; | |
| 901 z4 = d5 + d1; | |
| 902 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); | |
| 903 | |
| 904 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 905 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 906 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 907 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 908 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
| 909 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
| 910 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
| 911 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
| 912 | |
| 913 z3 += z5; | |
| 914 z4 += z5; | |
| 915 | |
| 916 tmp0 += z1 + z3; | |
| 917 tmp1 += z2 + z4; | |
| 918 tmp2 += z2 + z3; | |
| 919 tmp3 += z1 + z4; | |
| 920 } else { | |
| 921 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ | |
| 922 z1 = d7; | |
| 923 z2 = d5 + d3; | |
| 924 z3 = d7 + d3; | |
| 925 z5 = MULTIPLY(z3 + d5, FIX_1_175875602); | |
| 926 | |
| 927 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 928 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 929 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 930 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
| 931 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
| 932 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
| 933 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
| 934 | |
| 935 z3 += z5; | |
| 936 z4 += z5; | |
| 937 | |
| 938 tmp0 += z1 + z3; | |
| 939 tmp1 += z2 + z4; | |
| 940 tmp2 += z2 + z3; | |
| 941 tmp3 = z1 + z4; | |
| 942 } | |
| 943 } else { | |
| 944 if (d1) { | |
| 945 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ | |
| 946 z1 = d7 + d1; | |
| 947 z2 = d5; | |
| 948 z3 = d7; | |
| 949 z4 = d5 + d1; | |
| 950 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); | |
| 951 | |
| 952 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 953 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 954 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 955 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
| 956 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
| 957 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
| 958 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
| 959 | |
| 960 z3 += z5; | |
| 961 z4 += z5; | |
| 962 | |
| 963 tmp0 += z1 + z3; | |
| 964 tmp1 += z2 + z4; | |
| 965 tmp2 = z2 + z3; | |
| 966 tmp3 += z1 + z4; | |
| 967 } else { | |
| 968 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ | |
| 969 tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
| 970 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
| 971 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
| 972 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
| 973 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
| 974 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
| 975 z5 = MULTIPLY(d5 + d7, FIX_1_175875602); | |
| 976 | |
| 977 z3 += z5; | |
| 978 z4 += z5; | |
| 979 | |
| 980 tmp0 += z3; | |
| 981 tmp1 += z4; | |
| 982 tmp2 = z2 + z3; | |
| 983 tmp3 = z1 + z4; | |
| 984 } | |
| 985 } | |
| 986 } else { | |
| 987 if (d3) { | |
| 988 if (d1) { | |
| 989 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ | |
| 990 z1 = d7 + d1; | |
| 991 z3 = d7 + d3; | |
| 992 z5 = MULTIPLY(z3 + d1, FIX_1_175875602); | |
| 993 | |
| 994 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 995 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 996 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 997 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
| 998 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
| 999 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
| 1000 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
| 1001 | |
| 1002 z3 += z5; | |
| 1003 z4 += z5; | |
| 1004 | |
| 1005 tmp0 += z1 + z3; | |
| 1006 tmp1 = z2 + z4; | |
| 1007 tmp2 += z2 + z3; | |
| 1008 tmp3 += z1 + z4; | |
| 1009 } else { | |
| 1010 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ | |
| 1011 z3 = d7 + d3; | |
| 1012 | |
| 1013 tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
| 1014 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
| 1015 tmp2 = MULTIPLY(d3, FIX_0_509795579); | |
| 1016 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
| 1017 z5 = MULTIPLY(z3, FIX_1_175875602); | |
| 1018 z3 = MULTIPLY(-z3, FIX_0_785694958); | |
| 1019 | |
| 1020 tmp0 += z3; | |
| 1021 tmp1 = z2 + z5; | |
| 1022 tmp2 += z3; | |
| 1023 tmp3 = z1 + z5; | |
| 1024 } | |
| 1025 } else { | |
| 1026 if (d1) { | |
| 1027 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ | |
| 1028 z1 = d7 + d1; | |
| 1029 z5 = MULTIPLY(z1, FIX_1_175875602); | |
| 1030 | |
| 1031 z1 = MULTIPLY(z1, FIX_0_275899380); | |
| 1032 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
| 1033 tmp0 = MULTIPLY(-d7, FIX_1_662939225); | |
| 1034 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
| 1035 tmp3 = MULTIPLY(d1, FIX_1_111140466); | |
| 1036 | |
| 1037 tmp0 += z1; | |
| 1038 tmp1 = z4 + z5; | |
| 1039 tmp2 = z3 + z5; | |
| 1040 tmp3 += z1; | |
| 1041 } else { | |
| 1042 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ | |
| 1043 tmp0 = MULTIPLY(-d7, FIX_1_387039845); | |
| 1044 tmp1 = MULTIPLY(d7, FIX_1_175875602); | |
| 1045 tmp2 = MULTIPLY(-d7, FIX_0_785694958); | |
| 1046 tmp3 = MULTIPLY(d7, FIX_0_275899380); | |
| 1047 } | |
| 1048 } | |
| 1049 } | |
| 1050 } else { | |
| 1051 if (d5) { | |
| 1052 if (d3) { | |
| 1053 if (d1) { | |
| 1054 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ | |
| 1055 z2 = d5 + d3; | |
| 1056 z4 = d5 + d1; | |
| 1057 z5 = MULTIPLY(d3 + z4, FIX_1_175875602); | |
| 1058 | |
| 1059 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 1060 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 1061 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 1062 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
| 1063 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
| 1064 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
| 1065 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
| 1066 | |
| 1067 z3 += z5; | |
| 1068 z4 += z5; | |
| 1069 | |
| 1070 tmp0 = z1 + z3; | |
| 1071 tmp1 += z2 + z4; | |
| 1072 tmp2 += z2 + z3; | |
| 1073 tmp3 += z1 + z4; | |
| 1074 } else { | |
| 1075 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ | |
| 1076 z2 = d5 + d3; | |
| 1077 | |
| 1078 z5 = MULTIPLY(z2, FIX_1_175875602); | |
| 1079 tmp1 = MULTIPLY(d5, FIX_1_662939225); | |
| 1080 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
| 1081 z2 = MULTIPLY(-z2, FIX_1_387039845); | |
| 1082 tmp2 = MULTIPLY(d3, FIX_1_111140466); | |
| 1083 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
| 1084 | |
| 1085 tmp0 = z3 + z5; | |
| 1086 tmp1 += z2; | |
| 1087 tmp2 += z2; | |
| 1088 tmp3 = z4 + z5; | |
| 1089 } | |
| 1090 } else { | |
| 1091 if (d1) { | |
| 1092 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ | |
| 1093 z4 = d5 + d1; | |
| 1094 | |
| 1095 z5 = MULTIPLY(z4, FIX_1_175875602); | |
| 1096 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
| 1097 tmp3 = MULTIPLY(d1, FIX_0_601344887); | |
| 1098 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
| 1099 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
| 1100 z4 = MULTIPLY(z4, FIX_0_785694958); | |
| 1101 | |
| 1102 tmp0 = z1 + z5; | |
| 1103 tmp1 += z4; | |
| 1104 tmp2 = z2 + z5; | |
| 1105 tmp3 += z4; | |
| 1106 } else { | |
| 1107 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ | |
| 1108 tmp0 = MULTIPLY(d5, FIX_1_175875602); | |
| 1109 tmp1 = MULTIPLY(d5, FIX_0_275899380); | |
| 1110 tmp2 = MULTIPLY(-d5, FIX_1_387039845); | |
| 1111 tmp3 = MULTIPLY(d5, FIX_0_785694958); | |
| 1112 } | |
| 1113 } | |
| 1114 } else { | |
| 1115 if (d3) { | |
| 1116 if (d1) { | |
| 1117 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ | |
| 1118 z5 = d1 + d3; | |
| 1119 tmp3 = MULTIPLY(d1, FIX_0_211164243); | |
| 1120 tmp2 = MULTIPLY(-d3, FIX_1_451774981); | |
| 1121 z1 = MULTIPLY(d1, FIX_1_061594337); | |
| 1122 z2 = MULTIPLY(-d3, FIX_2_172734803); | |
| 1123 z4 = MULTIPLY(z5, FIX_0_785694958); | |
| 1124 z5 = MULTIPLY(z5, FIX_1_175875602); | |
| 1125 | |
| 1126 tmp0 = z1 - z4; | |
| 1127 tmp1 = z2 + z4; | |
| 1128 tmp2 += z5; | |
| 1129 tmp3 += z5; | |
| 1130 } else { | |
| 1131 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ | |
| 1132 tmp0 = MULTIPLY(-d3, FIX_0_785694958); | |
| 1133 tmp1 = MULTIPLY(-d3, FIX_1_387039845); | |
| 1134 tmp2 = MULTIPLY(-d3, FIX_0_275899380); | |
| 1135 tmp3 = MULTIPLY(d3, FIX_1_175875602); | |
| 1136 } | |
| 1137 } else { | |
| 1138 if (d1) { | |
| 1139 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ | |
| 1140 tmp0 = MULTIPLY(d1, FIX_0_275899380); | |
| 1141 tmp1 = MULTIPLY(d1, FIX_0_785694958); | |
| 1142 tmp2 = MULTIPLY(d1, FIX_1_175875602); | |
| 1143 tmp3 = MULTIPLY(d1, FIX_1_387039845); | |
| 1144 } else { | |
| 1145 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ | |
| 1146 tmp0 = tmp1 = tmp2 = tmp3 = 0; | |
| 1147 } | |
| 1148 } | |
| 1149 } | |
| 1150 } | |
| 1151 | |
| 1152 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
| 1153 | |
| 1154 dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3, | |
| 1155 CONST_BITS+PASS1_BITS+3); | |
| 1156 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3, | |
| 1157 CONST_BITS+PASS1_BITS+3); | |
| 1158 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2, | |
| 1159 CONST_BITS+PASS1_BITS+3); | |
| 1160 dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2, | |
| 1161 CONST_BITS+PASS1_BITS+3); | |
| 1162 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1, | |
| 1163 CONST_BITS+PASS1_BITS+3); | |
| 1164 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1, | |
| 1165 CONST_BITS+PASS1_BITS+3); | |
| 1166 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0, | |
| 1167 CONST_BITS+PASS1_BITS+3); | |
| 1168 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0, | |
| 1169 CONST_BITS+PASS1_BITS+3); | |
| 1170 | |
| 1171 dataptr++; /* advance pointer to next column */ | |
| 1172 } | |
| 1173 } | |
| 1174 | |
|
440
000aeeac27a2
* started to cleanup name clashes for onetime compilation
kabi
parents:
36
diff
changeset
|
1175 #undef FIX |
|
000aeeac27a2
* started to cleanup name clashes for onetime compilation
kabi
parents:
36
diff
changeset
|
1176 #undef CONST_BITS |
