Mercurial > libavcodec.hg
annotate jrevdct.c @ 2485:2844b8cf4e11 libavcodec
H.264 multiplce instance in reference list patch by (Loic <lll+ffmpeg m4x org )
With this patch, the streams CAWP5_TOSHIBA_E.264 and CVWP5_TOSHIBA_E.264
are completely decoded
| author | michael |
|---|---|
| date | Tue, 01 Feb 2005 11:26:11 +0000 |
| parents | 258f21820108 |
| children | ef2149182f1c |
| rev | line source |
|---|---|
| 0 | 1 /* |
| 2 * jrevdct.c | |
| 3 * | |
| 4 * Copyright (C) 1991, 1992, Thomas G. Lane. | |
| 5 * This file is part of the Independent JPEG Group's software. | |
| 6 * For conditions of distribution and use, see the accompanying README file. | |
| 7 * | |
| 8 * This file contains the basic inverse-DCT transformation subroutine. | |
| 9 * | |
| 10 * This implementation is based on an algorithm described in | |
| 11 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT | |
| 12 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, | |
| 13 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. | |
| 14 * The primary algorithm described there uses 11 multiplies and 29 adds. | |
| 15 * We use their alternate method with 12 multiplies and 32 adds. | |
| 16 * The advantage of this method is that no data path contains more than one | |
| 17 * multiplication; this allows a very simple and accurate implementation in | |
| 18 * scaled fixed-point arithmetic, with a minimal number of shifts. | |
| 19 * | |
| 20 * I've made lots of modifications to attempt to take advantage of the | |
| 21 * sparse nature of the DCT matrices we're getting. Although the logic | |
| 22 * is cumbersome, it's straightforward and the resulting code is much | |
| 23 * faster. | |
| 24 * | |
| 25 * A better way to do this would be to pass in the DCT block as a sparse | |
| 26 * matrix, perhaps with the difference cases encoded. | |
| 27 */ | |
| 1106 | 28 |
| 29 /** | |
| 30 * @file jrevdct.c | |
| 31 * Independent JPEG Group's LLM idct. | |
| 32 */ | |
| 33 | |
| 0 | 34 #include "common.h" |
| 35 #include "dsputil.h" | |
| 36 | |
| 37 #define EIGHT_BIT_SAMPLES | |
| 38 | |
| 39 #define DCTSIZE 8 | |
| 40 #define DCTSIZE2 64 | |
| 41 | |
| 42 #define GLOBAL | |
| 43 | |
| 44 #define RIGHT_SHIFT(x, n) ((x) >> (n)) | |
| 45 | |
| 46 typedef DCTELEM DCTBLOCK[DCTSIZE2]; | |
| 47 | |
| 48 #define CONST_BITS 13 | |
| 49 | |
| 50 /* | |
| 51 * This routine is specialized to the case DCTSIZE = 8. | |
| 52 */ | |
| 53 | |
| 54 #if DCTSIZE != 8 | |
| 55 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |
| 56 #endif | |
| 57 | |
| 58 | |
| 59 /* | |
| 60 * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT | |
| 61 * on each column. Direct algorithms are also available, but they are | |
| 62 * much more complex and seem not to be any faster when reduced to code. | |
| 63 * | |
| 64 * The poop on this scaling stuff is as follows: | |
| 65 * | |
| 66 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) | |
| 67 * larger than the true IDCT outputs. The final outputs are therefore | |
| 68 * a factor of N larger than desired; since N=8 this can be cured by | |
| 69 * a simple right shift at the end of the algorithm. The advantage of | |
| 70 * this arrangement is that we save two multiplications per 1-D IDCT, | |
| 71 * because the y0 and y4 inputs need not be divided by sqrt(N). | |
| 72 * | |
| 73 * We have to do addition and subtraction of the integer inputs, which | |
| 74 * is no problem, and multiplication by fractional constants, which is | |
| 75 * a problem to do in integer arithmetic. We multiply all the constants | |
| 76 * by CONST_SCALE and convert them to integer constants (thus retaining | |
| 77 * CONST_BITS bits of precision in the constants). After doing a | |
| 78 * multiplication we have to divide the product by CONST_SCALE, with proper | |
| 79 * rounding, to produce the correct output. This division can be done | |
| 80 * cheaply as a right shift of CONST_BITS bits. We postpone shifting | |
| 81 * as long as possible so that partial sums can be added together with | |
| 82 * full fractional precision. | |
| 83 * | |
| 84 * The outputs of the first pass are scaled up by PASS1_BITS bits so that | |
| 85 * they are represented to better-than-integral precision. These outputs | |
| 86 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word | |
| 87 * with the recommended scaling. (To scale up 12-bit sample data further, an | |
| 88 * intermediate int32 array would be needed.) | |
| 89 * | |
| 90 * To avoid overflow of the 32-bit intermediate results in pass 2, we must | |
| 91 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis | |
| 92 * shows that the values given below are the most effective. | |
| 93 */ | |
| 94 | |
| 95 #ifdef EIGHT_BIT_SAMPLES | |
| 96 #define PASS1_BITS 2 | |
| 97 #else | |
| 98 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ | |
| 99 #endif | |
| 100 | |
| 1064 | 101 #define ONE ((int32_t) 1) |
| 0 | 102 |
| 103 #define CONST_SCALE (ONE << CONST_BITS) | |
| 104 | |
| 105 /* Convert a positive real constant to an integer scaled by CONST_SCALE. | |
| 106 * IMPORTANT: if your compiler doesn't do this arithmetic at compile time, | |
| 107 * you will pay a significant penalty in run time. In that case, figure | |
| 108 * the correct integer constant values and insert them by hand. | |
| 109 */ | |
| 110 | |
| 111 /* Actually FIX is no longer used, we precomputed them all */ | |
| 1064 | 112 #define FIX(x) ((int32_t) ((x) * CONST_SCALE + 0.5)) |
| 0 | 113 |
| 1064 | 114 /* Descale and correctly round an int32_t value that's scaled by N bits. |
| 0 | 115 * We assume RIGHT_SHIFT rounds towards minus infinity, so adding |
| 116 * the fudge factor is correct for either sign of X. | |
| 117 */ | |
| 118 | |
| 119 #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) | |
| 120 | |
| 1064 | 121 /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result. |
| 0 | 122 * For 8-bit samples with the recommended scaling, all the variable |
| 123 * and constant values involved are no more than 16 bits wide, so a | |
| 124 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply; | |
| 125 * this provides a useful speedup on many machines. | |
| 126 * There is no way to specify a 16x16->32 multiply in portable C, but | |
| 127 * some C compilers will do the right thing if you provide the correct | |
| 128 * combination of casts. | |
| 129 * NB: for 12-bit samples, a full 32-bit multiplication will be needed. | |
| 130 */ | |
| 131 | |
| 132 #ifdef EIGHT_BIT_SAMPLES | |
| 133 #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ | |
| 1064 | 134 #define MULTIPLY(var,const) (((int16_t) (var)) * ((int16_t) (const))) |
| 0 | 135 #endif |
| 136 #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ | |
| 1064 | 137 #define MULTIPLY(var,const) (((int16_t) (var)) * ((int32_t) (const))) |
| 0 | 138 #endif |
| 139 #endif | |
| 140 | |
| 141 #ifndef MULTIPLY /* default definition */ | |
| 142 #define MULTIPLY(var,const) ((var) * (const)) | |
| 143 #endif | |
| 144 | |
| 145 | |
| 146 /* | |
| 147 Unlike our decoder where we approximate the FIXes, we need to use exact | |
| 148 ones here or successive P-frames will drift too much with Reference frame coding | |
| 149 */ | |
| 150 #define FIX_0_211164243 1730 | |
| 151 #define FIX_0_275899380 2260 | |
| 152 #define FIX_0_298631336 2446 | |
| 153 #define FIX_0_390180644 3196 | |
| 154 #define FIX_0_509795579 4176 | |
| 155 #define FIX_0_541196100 4433 | |
| 156 #define FIX_0_601344887 4926 | |
| 157 #define FIX_0_765366865 6270 | |
| 158 #define FIX_0_785694958 6436 | |
| 159 #define FIX_0_899976223 7373 | |
| 160 #define FIX_1_061594337 8697 | |
| 161 #define FIX_1_111140466 9102 | |
| 162 #define FIX_1_175875602 9633 | |
| 163 #define FIX_1_306562965 10703 | |
| 164 #define FIX_1_387039845 11363 | |
| 165 #define FIX_1_451774981 11893 | |
| 166 #define FIX_1_501321110 12299 | |
| 167 #define FIX_1_662939225 13623 | |
| 168 #define FIX_1_847759065 15137 | |
| 169 #define FIX_1_961570560 16069 | |
| 170 #define FIX_2_053119869 16819 | |
| 171 #define FIX_2_172734803 17799 | |
| 172 #define FIX_2_562915447 20995 | |
| 173 #define FIX_3_072711026 25172 | |
| 174 | |
| 175 /* | |
| 176 * Perform the inverse DCT on one block of coefficients. | |
| 177 */ | |
| 178 | |
| 179 void j_rev_dct(DCTBLOCK data) | |
| 180 { | |
| 1064 | 181 int32_t tmp0, tmp1, tmp2, tmp3; |
| 182 int32_t tmp10, tmp11, tmp12, tmp13; | |
| 183 int32_t z1, z2, z3, z4, z5; | |
| 184 int32_t d0, d1, d2, d3, d4, d5, d6, d7; | |
| 0 | 185 register DCTELEM *dataptr; |
| 186 int rowctr; | |
| 187 | |
| 188 /* Pass 1: process rows. */ | |
| 189 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ | |
| 190 /* furthermore, we scale the results by 2**PASS1_BITS. */ | |
| 191 | |
| 192 dataptr = data; | |
| 193 | |
| 194 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { | |
| 195 /* Due to quantization, we will usually find that many of the input | |
| 196 * coefficients are zero, especially the AC terms. We can exploit this | |
| 197 * by short-circuiting the IDCT calculation for any row in which all | |
| 198 * the AC terms are zero. In that case each output is equal to the | |
| 199 * DC coefficient (with scale factor as needed). | |
| 200 * With typical images and quantization tables, half or more of the | |
| 201 * row DCT calculations can be simplified this way. | |
| 202 */ | |
| 203 | |
| 204 register int *idataptr = (int*)dataptr; | |
| 205 | |
|
36
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
206 /* WARNING: we do the same permutation as MMX idct to simplify the |
|
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
207 video core */ |
| 0 | 208 d0 = dataptr[0]; |
|
36
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
209 d2 = dataptr[1]; |
|
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
210 d4 = dataptr[2]; |
|
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
211 d6 = dataptr[3]; |
|
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
212 d1 = dataptr[4]; |
|
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
213 d3 = dataptr[5]; |
|
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
214 d5 = dataptr[6]; |
| 0 | 215 d7 = dataptr[7]; |
| 216 | |
|
36
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
217 if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) { |
| 0 | 218 /* AC terms all zero */ |
| 219 if (d0) { | |
| 220 /* Compute a 32 bit value to assign. */ | |
| 221 DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS); | |
| 222 register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000); | |
| 223 | |
| 224 idataptr[0] = v; | |
| 225 idataptr[1] = v; | |
| 226 idataptr[2] = v; | |
| 227 idataptr[3] = v; | |
| 228 } | |
| 229 | |
| 230 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 231 continue; | |
| 232 } | |
| 233 | |
| 234 /* Even part: reverse the even part of the forward DCT. */ | |
| 235 /* The rotator is sqrt(2)*c(-6). */ | |
| 236 { | |
| 237 if (d6) { | |
| 238 if (d2) { | |
| 239 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ | |
| 240 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 241 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 242 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 243 | |
| 244 tmp0 = (d0 + d4) << CONST_BITS; | |
| 245 tmp1 = (d0 - d4) << CONST_BITS; | |
| 246 | |
| 247 tmp10 = tmp0 + tmp3; | |
| 248 tmp13 = tmp0 - tmp3; | |
| 249 tmp11 = tmp1 + tmp2; | |
| 250 tmp12 = tmp1 - tmp2; | |
| 251 } else { | |
| 252 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ | |
| 253 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 254 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 255 | |
| 256 tmp0 = (d0 + d4) << CONST_BITS; | |
| 257 tmp1 = (d0 - d4) << CONST_BITS; | |
| 258 | |
| 259 tmp10 = tmp0 + tmp3; | |
| 260 tmp13 = tmp0 - tmp3; | |
| 261 tmp11 = tmp1 + tmp2; | |
| 262 tmp12 = tmp1 - tmp2; | |
| 263 } | |
| 2263 | 264 } else { |
| 0 | 265 if (d2) { |
| 266 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ | |
| 267 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 268 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 269 | |
| 270 tmp0 = (d0 + d4) << CONST_BITS; | |
| 271 tmp1 = (d0 - d4) << CONST_BITS; | |
| 272 | |
| 273 tmp10 = tmp0 + tmp3; | |
| 274 tmp13 = tmp0 - tmp3; | |
| 275 tmp11 = tmp1 + tmp2; | |
| 276 tmp12 = tmp1 - tmp2; | |
| 277 } else { | |
| 278 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ | |
| 279 tmp10 = tmp13 = (d0 + d4) << CONST_BITS; | |
| 280 tmp11 = tmp12 = (d0 - d4) << CONST_BITS; | |
| 281 } | |
| 282 } | |
| 283 | |
| 284 /* Odd part per figure 8; the matrix is unitary and hence its | |
| 285 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. | |
| 286 */ | |
| 287 | |
| 288 if (d7) { | |
| 289 if (d5) { | |
| 290 if (d3) { | |
| 291 if (d1) { | |
| 292 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ | |
| 293 z1 = d7 + d1; | |
| 294 z2 = d5 + d3; | |
| 295 z3 = d7 + d3; | |
| 296 z4 = d5 + d1; | |
| 297 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); | |
| 298 | |
| 299 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 300 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 301 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 302 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 303 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
| 304 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
| 305 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
| 306 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
| 307 | |
| 308 z3 += z5; | |
| 309 z4 += z5; | |
| 310 | |
| 311 tmp0 += z1 + z3; | |
| 312 tmp1 += z2 + z4; | |
| 313 tmp2 += z2 + z3; | |
| 314 tmp3 += z1 + z4; | |
| 315 } else { | |
| 316 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ | |
| 317 z2 = d5 + d3; | |
| 318 z3 = d7 + d3; | |
| 319 z5 = MULTIPLY(z3 + d5, FIX_1_175875602); | |
| 320 | |
| 321 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 322 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 323 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 324 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
| 325 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
| 326 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
| 327 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
| 328 | |
| 329 z3 += z5; | |
| 330 z4 += z5; | |
| 331 | |
| 332 tmp0 += z1 + z3; | |
| 333 tmp1 += z2 + z4; | |
| 334 tmp2 += z2 + z3; | |
| 335 tmp3 = z1 + z4; | |
| 336 } | |
| 337 } else { | |
| 338 if (d1) { | |
| 339 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ | |
| 340 z1 = d7 + d1; | |
| 341 z4 = d5 + d1; | |
| 342 z5 = MULTIPLY(d7 + z4, FIX_1_175875602); | |
| 343 | |
| 344 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 345 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 346 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 347 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
| 348 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
| 349 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
| 350 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
| 351 | |
| 352 z3 += z5; | |
| 353 z4 += z5; | |
| 354 | |
| 355 tmp0 += z1 + z3; | |
| 356 tmp1 += z2 + z4; | |
| 357 tmp2 = z2 + z3; | |
| 358 tmp3 += z1 + z4; | |
| 359 } else { | |
| 360 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ | |
| 361 tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
| 362 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
| 363 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
| 364 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
| 365 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
| 366 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
| 367 z5 = MULTIPLY(d5 + d7, FIX_1_175875602); | |
| 368 | |
| 369 z3 += z5; | |
| 370 z4 += z5; | |
| 371 | |
| 372 tmp0 += z3; | |
| 373 tmp1 += z4; | |
| 374 tmp2 = z2 + z3; | |
| 375 tmp3 = z1 + z4; | |
| 376 } | |
| 377 } | |
| 378 } else { | |
| 379 if (d3) { | |
| 380 if (d1) { | |
| 381 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ | |
| 382 z1 = d7 + d1; | |
| 383 z3 = d7 + d3; | |
| 384 z5 = MULTIPLY(z3 + d1, FIX_1_175875602); | |
| 385 | |
| 386 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 387 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 388 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 389 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
| 390 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
| 391 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
| 392 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
| 393 | |
| 394 z3 += z5; | |
| 395 z4 += z5; | |
| 396 | |
| 397 tmp0 += z1 + z3; | |
| 398 tmp1 = z2 + z4; | |
| 399 tmp2 += z2 + z3; | |
| 400 tmp3 += z1 + z4; | |
| 401 } else { | |
| 402 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ | |
| 403 z3 = d7 + d3; | |
| 404 | |
| 405 tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
| 406 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
| 407 tmp2 = MULTIPLY(d3, FIX_0_509795579); | |
| 408 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
| 409 z5 = MULTIPLY(z3, FIX_1_175875602); | |
| 410 z3 = MULTIPLY(-z3, FIX_0_785694958); | |
| 411 | |
| 412 tmp0 += z3; | |
| 413 tmp1 = z2 + z5; | |
| 414 tmp2 += z3; | |
| 415 tmp3 = z1 + z5; | |
| 416 } | |
| 417 } else { | |
| 418 if (d1) { | |
| 419 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ | |
| 420 z1 = d7 + d1; | |
| 421 z5 = MULTIPLY(z1, FIX_1_175875602); | |
| 422 | |
| 423 z1 = MULTIPLY(z1, FIX_0_275899380); | |
| 424 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
| 425 tmp0 = MULTIPLY(-d7, FIX_1_662939225); | |
| 426 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
| 427 tmp3 = MULTIPLY(d1, FIX_1_111140466); | |
| 428 | |
| 429 tmp0 += z1; | |
| 430 tmp1 = z4 + z5; | |
| 431 tmp2 = z3 + z5; | |
| 432 tmp3 += z1; | |
| 433 } else { | |
| 434 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ | |
| 435 tmp0 = MULTIPLY(-d7, FIX_1_387039845); | |
| 436 tmp1 = MULTIPLY(d7, FIX_1_175875602); | |
| 437 tmp2 = MULTIPLY(-d7, FIX_0_785694958); | |
| 438 tmp3 = MULTIPLY(d7, FIX_0_275899380); | |
| 439 } | |
| 440 } | |
| 441 } | |
| 442 } else { | |
| 443 if (d5) { | |
| 444 if (d3) { | |
| 445 if (d1) { | |
| 446 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ | |
| 447 z2 = d5 + d3; | |
| 448 z4 = d5 + d1; | |
| 449 z5 = MULTIPLY(d3 + z4, FIX_1_175875602); | |
| 450 | |
| 451 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 452 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 453 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 454 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
| 455 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
| 456 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
| 457 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
| 458 | |
| 459 z3 += z5; | |
| 460 z4 += z5; | |
| 461 | |
| 462 tmp0 = z1 + z3; | |
| 463 tmp1 += z2 + z4; | |
| 464 tmp2 += z2 + z3; | |
| 465 tmp3 += z1 + z4; | |
| 466 } else { | |
| 467 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ | |
| 468 z2 = d5 + d3; | |
| 469 | |
| 470 z5 = MULTIPLY(z2, FIX_1_175875602); | |
| 471 tmp1 = MULTIPLY(d5, FIX_1_662939225); | |
| 472 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
| 473 z2 = MULTIPLY(-z2, FIX_1_387039845); | |
| 474 tmp2 = MULTIPLY(d3, FIX_1_111140466); | |
| 475 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
| 476 | |
| 477 tmp0 = z3 + z5; | |
| 478 tmp1 += z2; | |
| 479 tmp2 += z2; | |
| 480 tmp3 = z4 + z5; | |
| 481 } | |
| 482 } else { | |
| 483 if (d1) { | |
| 484 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ | |
| 485 z4 = d5 + d1; | |
| 486 | |
| 487 z5 = MULTIPLY(z4, FIX_1_175875602); | |
| 488 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
| 489 tmp3 = MULTIPLY(d1, FIX_0_601344887); | |
| 490 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
| 491 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
| 492 z4 = MULTIPLY(z4, FIX_0_785694958); | |
| 493 | |
| 494 tmp0 = z1 + z5; | |
| 495 tmp1 += z4; | |
| 496 tmp2 = z2 + z5; | |
| 497 tmp3 += z4; | |
| 498 } else { | |
| 499 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ | |
| 500 tmp0 = MULTIPLY(d5, FIX_1_175875602); | |
| 501 tmp1 = MULTIPLY(d5, FIX_0_275899380); | |
| 502 tmp2 = MULTIPLY(-d5, FIX_1_387039845); | |
| 503 tmp3 = MULTIPLY(d5, FIX_0_785694958); | |
| 504 } | |
| 505 } | |
| 506 } else { | |
| 507 if (d3) { | |
| 508 if (d1) { | |
| 509 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ | |
| 510 z5 = d1 + d3; | |
| 511 tmp3 = MULTIPLY(d1, FIX_0_211164243); | |
| 512 tmp2 = MULTIPLY(-d3, FIX_1_451774981); | |
| 513 z1 = MULTIPLY(d1, FIX_1_061594337); | |
| 514 z2 = MULTIPLY(-d3, FIX_2_172734803); | |
| 515 z4 = MULTIPLY(z5, FIX_0_785694958); | |
| 516 z5 = MULTIPLY(z5, FIX_1_175875602); | |
| 517 | |
| 518 tmp0 = z1 - z4; | |
| 519 tmp1 = z2 + z4; | |
| 520 tmp2 += z5; | |
| 521 tmp3 += z5; | |
| 522 } else { | |
| 523 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ | |
| 524 tmp0 = MULTIPLY(-d3, FIX_0_785694958); | |
| 525 tmp1 = MULTIPLY(-d3, FIX_1_387039845); | |
| 526 tmp2 = MULTIPLY(-d3, FIX_0_275899380); | |
| 527 tmp3 = MULTIPLY(d3, FIX_1_175875602); | |
| 528 } | |
| 529 } else { | |
| 530 if (d1) { | |
| 531 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ | |
| 532 tmp0 = MULTIPLY(d1, FIX_0_275899380); | |
| 533 tmp1 = MULTIPLY(d1, FIX_0_785694958); | |
| 534 tmp2 = MULTIPLY(d1, FIX_1_175875602); | |
| 535 tmp3 = MULTIPLY(d1, FIX_1_387039845); | |
| 536 } else { | |
| 537 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ | |
| 538 tmp0 = tmp1 = tmp2 = tmp3 = 0; | |
| 539 } | |
| 540 } | |
| 541 } | |
| 542 } | |
| 543 } | |
| 544 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
| 545 | |
| 546 dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); | |
| 547 dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); | |
| 548 dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); | |
| 549 dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); | |
| 550 dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); | |
| 551 dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); | |
| 552 dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); | |
| 553 dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); | |
| 554 | |
| 555 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 556 } | |
| 557 | |
| 558 /* Pass 2: process columns. */ | |
| 559 /* Note that we must descale the results by a factor of 8 == 2**3, */ | |
| 560 /* and also undo the PASS1_BITS scaling. */ | |
| 561 | |
| 562 dataptr = data; | |
| 563 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { | |
| 564 /* Columns of zeroes can be exploited in the same way as we did with rows. | |
| 565 * However, the row calculation has created many nonzero AC terms, so the | |
| 566 * simplification applies less often (typically 5% to 10% of the time). | |
| 567 * On machines with very fast multiplication, it's possible that the | |
| 568 * test takes more time than it's worth. In that case this section | |
| 569 * may be commented out. | |
| 570 */ | |
| 571 | |
| 572 d0 = dataptr[DCTSIZE*0]; | |
| 573 d1 = dataptr[DCTSIZE*1]; | |
| 574 d2 = dataptr[DCTSIZE*2]; | |
| 575 d3 = dataptr[DCTSIZE*3]; | |
| 576 d4 = dataptr[DCTSIZE*4]; | |
| 577 d5 = dataptr[DCTSIZE*5]; | |
| 578 d6 = dataptr[DCTSIZE*6]; | |
| 579 d7 = dataptr[DCTSIZE*7]; | |
| 580 | |
| 581 /* Even part: reverse the even part of the forward DCT. */ | |
| 582 /* The rotator is sqrt(2)*c(-6). */ | |
| 583 if (d6) { | |
| 584 if (d2) { | |
| 585 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ | |
| 586 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 587 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 588 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 589 | |
| 590 tmp0 = (d0 + d4) << CONST_BITS; | |
| 591 tmp1 = (d0 - d4) << CONST_BITS; | |
| 592 | |
| 593 tmp10 = tmp0 + tmp3; | |
| 594 tmp13 = tmp0 - tmp3; | |
| 595 tmp11 = tmp1 + tmp2; | |
| 596 tmp12 = tmp1 - tmp2; | |
| 597 } else { | |
| 598 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ | |
| 599 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 600 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 601 | |
| 602 tmp0 = (d0 + d4) << CONST_BITS; | |
| 603 tmp1 = (d0 - d4) << CONST_BITS; | |
| 604 | |
| 605 tmp10 = tmp0 + tmp3; | |
| 606 tmp13 = tmp0 - tmp3; | |
| 607 tmp11 = tmp1 + tmp2; | |
| 608 tmp12 = tmp1 - tmp2; | |
| 609 } | |
| 2263 | 610 } else { |
| 0 | 611 if (d2) { |
| 612 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ | |
| 613 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 614 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 615 | |
| 616 tmp0 = (d0 + d4) << CONST_BITS; | |
| 617 tmp1 = (d0 - d4) << CONST_BITS; | |
| 618 | |
| 619 tmp10 = tmp0 + tmp3; | |
| 620 tmp13 = tmp0 - tmp3; | |
| 621 tmp11 = tmp1 + tmp2; | |
| 622 tmp12 = tmp1 - tmp2; | |
| 623 } else { | |
| 624 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ | |
| 625 tmp10 = tmp13 = (d0 + d4) << CONST_BITS; | |
| 626 tmp11 = tmp12 = (d0 - d4) << CONST_BITS; | |
| 627 } | |
| 628 } | |
| 629 | |
| 630 /* Odd part per figure 8; the matrix is unitary and hence its | |
| 631 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. | |
| 632 */ | |
| 633 if (d7) { | |
| 634 if (d5) { | |
| 635 if (d3) { | |
| 636 if (d1) { | |
| 637 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ | |
| 638 z1 = d7 + d1; | |
| 639 z2 = d5 + d3; | |
| 640 z3 = d7 + d3; | |
| 641 z4 = d5 + d1; | |
| 642 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); | |
| 643 | |
| 644 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 645 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 646 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 647 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 648 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
| 649 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
| 650 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
| 651 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
| 652 | |
| 653 z3 += z5; | |
| 654 z4 += z5; | |
| 655 | |
| 656 tmp0 += z1 + z3; | |
| 657 tmp1 += z2 + z4; | |
| 658 tmp2 += z2 + z3; | |
| 659 tmp3 += z1 + z4; | |
| 660 } else { | |
| 661 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ | |
| 662 z1 = d7; | |
| 663 z2 = d5 + d3; | |
| 664 z3 = d7 + d3; | |
| 665 z5 = MULTIPLY(z3 + d5, FIX_1_175875602); | |
| 666 | |
| 667 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 668 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 669 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 670 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
| 671 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
| 672 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
| 673 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
| 674 | |
| 675 z3 += z5; | |
| 676 z4 += z5; | |
| 677 | |
| 678 tmp0 += z1 + z3; | |
| 679 tmp1 += z2 + z4; | |
| 680 tmp2 += z2 + z3; | |
| 681 tmp3 = z1 + z4; | |
| 682 } | |
| 683 } else { | |
| 684 if (d1) { | |
| 685 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ | |
| 686 z1 = d7 + d1; | |
| 687 z2 = d5; | |
| 688 z3 = d7; | |
| 689 z4 = d5 + d1; | |
| 690 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); | |
| 691 | |
| 692 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 693 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 694 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 695 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
| 696 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
| 697 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
| 698 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
| 699 | |
| 700 z3 += z5; | |
| 701 z4 += z5; | |
| 702 | |
| 703 tmp0 += z1 + z3; | |
| 704 tmp1 += z2 + z4; | |
| 705 tmp2 = z2 + z3; | |
| 706 tmp3 += z1 + z4; | |
| 707 } else { | |
| 708 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ | |
| 709 tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
| 710 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
| 711 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
| 712 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
| 713 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
| 714 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
| 715 z5 = MULTIPLY(d5 + d7, FIX_1_175875602); | |
| 716 | |
| 717 z3 += z5; | |
| 718 z4 += z5; | |
| 719 | |
| 720 tmp0 += z3; | |
| 721 tmp1 += z4; | |
| 722 tmp2 = z2 + z3; | |
| 723 tmp3 = z1 + z4; | |
| 724 } | |
| 725 } | |
| 726 } else { | |
| 727 if (d3) { | |
| 728 if (d1) { | |
| 729 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ | |
| 730 z1 = d7 + d1; | |
| 731 z3 = d7 + d3; | |
| 732 z5 = MULTIPLY(z3 + d1, FIX_1_175875602); | |
| 733 | |
| 734 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 735 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 736 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 737 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
| 738 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
| 739 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
| 740 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
| 741 | |
| 742 z3 += z5; | |
| 743 z4 += z5; | |
| 744 | |
| 745 tmp0 += z1 + z3; | |
| 746 tmp1 = z2 + z4; | |
| 747 tmp2 += z2 + z3; | |
| 748 tmp3 += z1 + z4; | |
| 749 } else { | |
| 750 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ | |
| 751 z3 = d7 + d3; | |
| 752 | |
| 753 tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
| 754 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
| 755 tmp2 = MULTIPLY(d3, FIX_0_509795579); | |
| 756 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
| 757 z5 = MULTIPLY(z3, FIX_1_175875602); | |
| 758 z3 = MULTIPLY(-z3, FIX_0_785694958); | |
| 759 | |
| 760 tmp0 += z3; | |
| 761 tmp1 = z2 + z5; | |
| 762 tmp2 += z3; | |
| 763 tmp3 = z1 + z5; | |
| 764 } | |
| 765 } else { | |
| 766 if (d1) { | |
| 767 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ | |
| 768 z1 = d7 + d1; | |
| 769 z5 = MULTIPLY(z1, FIX_1_175875602); | |
| 770 | |
| 771 z1 = MULTIPLY(z1, FIX_0_275899380); | |
| 772 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
| 773 tmp0 = MULTIPLY(-d7, FIX_1_662939225); | |
| 774 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
| 775 tmp3 = MULTIPLY(d1, FIX_1_111140466); | |
| 776 | |
| 777 tmp0 += z1; | |
| 778 tmp1 = z4 + z5; | |
| 779 tmp2 = z3 + z5; | |
| 780 tmp3 += z1; | |
| 781 } else { | |
| 782 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ | |
| 783 tmp0 = MULTIPLY(-d7, FIX_1_387039845); | |
| 784 tmp1 = MULTIPLY(d7, FIX_1_175875602); | |
| 785 tmp2 = MULTIPLY(-d7, FIX_0_785694958); | |
| 786 tmp3 = MULTIPLY(d7, FIX_0_275899380); | |
| 787 } | |
| 788 } | |
| 789 } | |
| 790 } else { | |
| 791 if (d5) { | |
| 792 if (d3) { | |
| 793 if (d1) { | |
| 794 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ | |
| 795 z2 = d5 + d3; | |
| 796 z4 = d5 + d1; | |
| 797 z5 = MULTIPLY(d3 + z4, FIX_1_175875602); | |
| 798 | |
| 799 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 800 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 801 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 802 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
| 803 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
| 804 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
| 805 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
| 806 | |
| 807 z3 += z5; | |
| 808 z4 += z5; | |
| 809 | |
| 810 tmp0 = z1 + z3; | |
| 811 tmp1 += z2 + z4; | |
| 812 tmp2 += z2 + z3; | |
| 813 tmp3 += z1 + z4; | |
| 814 } else { | |
| 815 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ | |
| 816 z2 = d5 + d3; | |
| 817 | |
| 818 z5 = MULTIPLY(z2, FIX_1_175875602); | |
| 819 tmp1 = MULTIPLY(d5, FIX_1_662939225); | |
| 820 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
| 821 z2 = MULTIPLY(-z2, FIX_1_387039845); | |
| 822 tmp2 = MULTIPLY(d3, FIX_1_111140466); | |
| 823 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
| 824 | |
| 825 tmp0 = z3 + z5; | |
| 826 tmp1 += z2; | |
| 827 tmp2 += z2; | |
| 828 tmp3 = z4 + z5; | |
| 829 } | |
| 830 } else { | |
| 831 if (d1) { | |
| 832 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ | |
| 833 z4 = d5 + d1; | |
| 834 | |
| 835 z5 = MULTIPLY(z4, FIX_1_175875602); | |
| 836 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
| 837 tmp3 = MULTIPLY(d1, FIX_0_601344887); | |
| 838 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
| 839 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
| 840 z4 = MULTIPLY(z4, FIX_0_785694958); | |
| 841 | |
| 842 tmp0 = z1 + z5; | |
| 843 tmp1 += z4; | |
| 844 tmp2 = z2 + z5; | |
| 845 tmp3 += z4; | |
| 846 } else { | |
| 847 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ | |
| 848 tmp0 = MULTIPLY(d5, FIX_1_175875602); | |
| 849 tmp1 = MULTIPLY(d5, FIX_0_275899380); | |
| 850 tmp2 = MULTIPLY(-d5, FIX_1_387039845); | |
| 851 tmp3 = MULTIPLY(d5, FIX_0_785694958); | |
| 852 } | |
| 853 } | |
| 854 } else { | |
| 855 if (d3) { | |
| 856 if (d1) { | |
| 857 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ | |
| 858 z5 = d1 + d3; | |
| 859 tmp3 = MULTIPLY(d1, FIX_0_211164243); | |
| 860 tmp2 = MULTIPLY(-d3, FIX_1_451774981); | |
| 861 z1 = MULTIPLY(d1, FIX_1_061594337); | |
| 862 z2 = MULTIPLY(-d3, FIX_2_172734803); | |
| 863 z4 = MULTIPLY(z5, FIX_0_785694958); | |
| 864 z5 = MULTIPLY(z5, FIX_1_175875602); | |
| 865 | |
| 866 tmp0 = z1 - z4; | |
| 867 tmp1 = z2 + z4; | |
| 868 tmp2 += z5; | |
| 869 tmp3 += z5; | |
| 870 } else { | |
| 871 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ | |
| 872 tmp0 = MULTIPLY(-d3, FIX_0_785694958); | |
| 873 tmp1 = MULTIPLY(-d3, FIX_1_387039845); | |
| 874 tmp2 = MULTIPLY(-d3, FIX_0_275899380); | |
| 875 tmp3 = MULTIPLY(d3, FIX_1_175875602); | |
| 876 } | |
| 877 } else { | |
| 878 if (d1) { | |
| 879 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ | |
| 880 tmp0 = MULTIPLY(d1, FIX_0_275899380); | |
| 881 tmp1 = MULTIPLY(d1, FIX_0_785694958); | |
| 882 tmp2 = MULTIPLY(d1, FIX_1_175875602); | |
| 883 tmp3 = MULTIPLY(d1, FIX_1_387039845); | |
| 884 } else { | |
| 885 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ | |
| 886 tmp0 = tmp1 = tmp2 = tmp3 = 0; | |
| 887 } | |
| 888 } | |
| 889 } | |
| 890 } | |
| 891 | |
| 892 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
| 893 | |
| 894 dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3, | |
| 895 CONST_BITS+PASS1_BITS+3); | |
| 896 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3, | |
| 897 CONST_BITS+PASS1_BITS+3); | |
| 898 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2, | |
| 899 CONST_BITS+PASS1_BITS+3); | |
| 900 dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2, | |
| 901 CONST_BITS+PASS1_BITS+3); | |
| 902 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1, | |
| 903 CONST_BITS+PASS1_BITS+3); | |
| 904 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1, | |
| 905 CONST_BITS+PASS1_BITS+3); | |
| 906 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0, | |
| 907 CONST_BITS+PASS1_BITS+3); | |
| 908 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0, | |
| 909 CONST_BITS+PASS1_BITS+3); | |
| 910 | |
| 911 dataptr++; /* advance pointer to next column */ | |
| 912 } | |
| 913 } | |
| 914 | |
| 2256 | 915 #undef DCTSIZE |
| 916 #define DCTSIZE 4 | |
| 917 #define DCTSTRIDE 8 | |
| 918 | |
| 919 void j_rev_dct4(DCTBLOCK data) | |
| 920 { | |
| 921 int32_t tmp0, tmp1, tmp2, tmp3; | |
| 922 int32_t tmp10, tmp11, tmp12, tmp13; | |
| 923 int32_t z1; | |
| 924 int32_t d0, d2, d4, d6; | |
| 925 register DCTELEM *dataptr; | |
| 926 int rowctr; | |
| 2262 | 927 |
| 2256 | 928 /* Pass 1: process rows. */ |
| 929 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ | |
| 930 /* furthermore, we scale the results by 2**PASS1_BITS. */ | |
| 931 | |
| 2262 | 932 data[0] += 4; |
| 933 | |
| 2256 | 934 dataptr = data; |
| 935 | |
| 936 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { | |
| 937 /* Due to quantization, we will usually find that many of the input | |
| 938 * coefficients are zero, especially the AC terms. We can exploit this | |
| 939 * by short-circuiting the IDCT calculation for any row in which all | |
| 940 * the AC terms are zero. In that case each output is equal to the | |
| 941 * DC coefficient (with scale factor as needed). | |
| 942 * With typical images and quantization tables, half or more of the | |
| 943 * row DCT calculations can be simplified this way. | |
| 944 */ | |
| 945 | |
| 946 register int *idataptr = (int*)dataptr; | |
| 947 | |
| 948 d0 = dataptr[0]; | |
| 949 d2 = dataptr[1]; | |
| 950 d4 = dataptr[2]; | |
| 951 d6 = dataptr[3]; | |
| 952 | |
| 953 if ((d2 | d4 | d6) == 0) { | |
| 954 /* AC terms all zero */ | |
| 955 if (d0) { | |
| 956 /* Compute a 32 bit value to assign. */ | |
| 957 DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS); | |
| 958 register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000); | |
| 959 | |
| 960 idataptr[0] = v; | |
| 961 idataptr[1] = v; | |
| 962 } | |
| 963 | |
| 964 dataptr += DCTSTRIDE; /* advance pointer to next row */ | |
| 965 continue; | |
| 966 } | |
| 2262 | 967 |
| 2256 | 968 /* Even part: reverse the even part of the forward DCT. */ |
| 969 /* The rotator is sqrt(2)*c(-6). */ | |
| 970 if (d6) { | |
| 971 if (d2) { | |
| 972 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ | |
| 973 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 974 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 975 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 976 | |
| 977 tmp0 = (d0 + d4) << CONST_BITS; | |
| 978 tmp1 = (d0 - d4) << CONST_BITS; | |
| 979 | |
| 980 tmp10 = tmp0 + tmp3; | |
| 981 tmp13 = tmp0 - tmp3; | |
| 982 tmp11 = tmp1 + tmp2; | |
| 983 tmp12 = tmp1 - tmp2; | |
| 984 } else { | |
| 985 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ | |
| 986 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 987 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 988 | |
| 989 tmp0 = (d0 + d4) << CONST_BITS; | |
| 990 tmp1 = (d0 - d4) << CONST_BITS; | |
| 991 | |
| 992 tmp10 = tmp0 + tmp3; | |
| 993 tmp13 = tmp0 - tmp3; | |
| 994 tmp11 = tmp1 + tmp2; | |
| 995 tmp12 = tmp1 - tmp2; | |
| 996 } | |
| 2262 | 997 } else { |
| 2256 | 998 if (d2) { |
| 999 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ | |
| 1000 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 1001 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 1002 | |
| 1003 tmp0 = (d0 + d4) << CONST_BITS; | |
| 1004 tmp1 = (d0 - d4) << CONST_BITS; | |
| 1005 | |
| 1006 tmp10 = tmp0 + tmp3; | |
| 1007 tmp13 = tmp0 - tmp3; | |
| 1008 tmp11 = tmp1 + tmp2; | |
| 1009 tmp12 = tmp1 - tmp2; | |
| 1010 } else { | |
| 1011 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ | |
| 1012 tmp10 = tmp13 = (d0 + d4) << CONST_BITS; | |
| 1013 tmp11 = tmp12 = (d0 - d4) << CONST_BITS; | |
| 1014 } | |
| 1015 } | |
| 1016 | |
| 1017 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
| 1018 | |
| 1019 dataptr[0] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS); | |
| 1020 dataptr[1] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS); | |
| 1021 dataptr[2] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS); | |
| 1022 dataptr[3] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS); | |
| 1023 | |
| 1024 dataptr += DCTSTRIDE; /* advance pointer to next row */ | |
| 1025 } | |
| 1026 | |
| 1027 /* Pass 2: process columns. */ | |
| 1028 /* Note that we must descale the results by a factor of 8 == 2**3, */ | |
| 1029 /* and also undo the PASS1_BITS scaling. */ | |
| 1030 | |
| 1031 dataptr = data; | |
| 1032 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { | |
| 1033 /* Columns of zeroes can be exploited in the same way as we did with rows. | |
| 1034 * However, the row calculation has created many nonzero AC terms, so the | |
| 1035 * simplification applies less often (typically 5% to 10% of the time). | |
| 1036 * On machines with very fast multiplication, it's possible that the | |
| 1037 * test takes more time than it's worth. In that case this section | |
| 1038 * may be commented out. | |
| 1039 */ | |
| 1040 | |
| 1041 d0 = dataptr[DCTSTRIDE*0]; | |
| 1042 d2 = dataptr[DCTSTRIDE*1]; | |
| 1043 d4 = dataptr[DCTSTRIDE*2]; | |
| 1044 d6 = dataptr[DCTSTRIDE*3]; | |
| 1045 | |
| 1046 /* Even part: reverse the even part of the forward DCT. */ | |
| 1047 /* The rotator is sqrt(2)*c(-6). */ | |
| 1048 if (d6) { | |
| 1049 if (d2) { | |
| 1050 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ | |
| 1051 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 1052 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 1053 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 1054 | |
| 1055 tmp0 = (d0 + d4) << CONST_BITS; | |
| 1056 tmp1 = (d0 - d4) << CONST_BITS; | |
| 1057 | |
| 1058 tmp10 = tmp0 + tmp3; | |
| 1059 tmp13 = tmp0 - tmp3; | |
| 1060 tmp11 = tmp1 + tmp2; | |
| 1061 tmp12 = tmp1 - tmp2; | |
| 1062 } else { | |
| 1063 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ | |
| 1064 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 1065 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 1066 | |
| 1067 tmp0 = (d0 + d4) << CONST_BITS; | |
| 1068 tmp1 = (d0 - d4) << CONST_BITS; | |
| 1069 | |
| 1070 tmp10 = tmp0 + tmp3; | |
| 1071 tmp13 = tmp0 - tmp3; | |
| 1072 tmp11 = tmp1 + tmp2; | |
| 1073 tmp12 = tmp1 - tmp2; | |
| 1074 } | |
| 2262 | 1075 } else { |
| 2256 | 1076 if (d2) { |
| 1077 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ | |
| 1078 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 1079 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 1080 | |
| 1081 tmp0 = (d0 + d4) << CONST_BITS; | |
| 1082 tmp1 = (d0 - d4) << CONST_BITS; | |
| 1083 | |
| 1084 tmp10 = tmp0 + tmp3; | |
| 1085 tmp13 = tmp0 - tmp3; | |
| 1086 tmp11 = tmp1 + tmp2; | |
| 1087 tmp12 = tmp1 - tmp2; | |
| 1088 } else { | |
| 1089 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ | |
| 1090 tmp10 = tmp13 = (d0 + d4) << CONST_BITS; | |
| 1091 tmp11 = tmp12 = (d0 - d4) << CONST_BITS; | |
| 1092 } | |
| 1093 } | |
| 1094 | |
| 1095 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
| 1096 | |
| 2262 | 1097 dataptr[DCTSTRIDE*0] = tmp10 >> (CONST_BITS+PASS1_BITS+3); |
| 1098 dataptr[DCTSTRIDE*1] = tmp11 >> (CONST_BITS+PASS1_BITS+3); | |
| 1099 dataptr[DCTSTRIDE*2] = tmp12 >> (CONST_BITS+PASS1_BITS+3); | |
| 1100 dataptr[DCTSTRIDE*3] = tmp13 >> (CONST_BITS+PASS1_BITS+3); | |
| 2256 | 1101 |
| 1102 dataptr++; /* advance pointer to next column */ | |
| 1103 } | |
| 1104 } | |
| 1105 | |
| 2257 | 1106 void j_rev_dct2(DCTBLOCK data){ |
| 1107 int d00, d01, d10, d11; | |
| 1108 | |
| 1109 data[0] += 4; | |
| 1110 d00 = data[0+0*DCTSTRIDE] + data[1+0*DCTSTRIDE]; | |
| 1111 d01 = data[0+0*DCTSTRIDE] - data[1+0*DCTSTRIDE]; | |
| 1112 d10 = data[0+1*DCTSTRIDE] + data[1+1*DCTSTRIDE]; | |
| 1113 d11 = data[0+1*DCTSTRIDE] - data[1+1*DCTSTRIDE]; | |
| 1114 | |
| 1115 data[0+0*DCTSTRIDE]= (d00 + d10)>>3; | |
| 1116 data[1+0*DCTSTRIDE]= (d01 + d11)>>3; | |
| 1117 data[0+1*DCTSTRIDE]= (d00 - d10)>>3; | |
| 1118 data[1+1*DCTSTRIDE]= (d01 - d11)>>3; | |
| 1119 } | |
| 2256 | 1120 |
| 2259 | 1121 void j_rev_dct1(DCTBLOCK data){ |
| 1122 data[0] = (data[0] + 4)>>3; | |
| 1123 } | |
| 1124 | |
|
440
000aeeac27a2
* started to cleanup name clashes for onetime compilation
kabi
parents:
36
diff
changeset
|
1125 #undef FIX |
|
000aeeac27a2
* started to cleanup name clashes for onetime compilation
kabi
parents:
36
diff
changeset
|
1126 #undef CONST_BITS |
