Mercurial > libavcodec.hg
annotate jrevdct.c @ 664:00a882f626bd libavcodec
interlaced mpeg4 b frame decoding
| author | michaelni |
|---|---|
| date | Fri, 13 Sep 2002 09:45:32 +0000 |
| parents | 000aeeac27a2 |
| children | b32afefe7d33 |
| rev | line source |
|---|---|
| 0 | 1 /* |
| 2 * jrevdct.c | |
| 3 * | |
| 4 * Copyright (C) 1991, 1992, Thomas G. Lane. | |
| 5 * This file is part of the Independent JPEG Group's software. | |
| 6 * For conditions of distribution and use, see the accompanying README file. | |
| 7 * | |
| 8 * This file contains the basic inverse-DCT transformation subroutine. | |
| 9 * | |
| 10 * This implementation is based on an algorithm described in | |
| 11 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT | |
| 12 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, | |
| 13 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. | |
| 14 * The primary algorithm described there uses 11 multiplies and 29 adds. | |
| 15 * We use their alternate method with 12 multiplies and 32 adds. | |
| 16 * The advantage of this method is that no data path contains more than one | |
| 17 * multiplication; this allows a very simple and accurate implementation in | |
| 18 * scaled fixed-point arithmetic, with a minimal number of shifts. | |
| 19 * | |
| 20 * I've made lots of modifications to attempt to take advantage of the | |
| 21 * sparse nature of the DCT matrices we're getting. Although the logic | |
| 22 * is cumbersome, it's straightforward and the resulting code is much | |
| 23 * faster. | |
| 24 * | |
| 25 * A better way to do this would be to pass in the DCT block as a sparse | |
| 26 * matrix, perhaps with the difference cases encoded. | |
| 27 */ | |
| 28 #include "common.h" | |
| 29 #include "dsputil.h" | |
| 30 | |
| 31 #define EIGHT_BIT_SAMPLES | |
| 32 | |
| 33 #define DCTSIZE 8 | |
| 34 #define DCTSIZE2 64 | |
| 35 | |
| 36 #define GLOBAL | |
| 37 | |
| 38 #define RIGHT_SHIFT(x, n) ((x) >> (n)) | |
| 39 | |
| 40 typedef DCTELEM DCTBLOCK[DCTSIZE2]; | |
| 41 | |
| 42 #define CONST_BITS 13 | |
| 43 | |
| 44 /* | |
| 45 * This routine is specialized to the case DCTSIZE = 8. | |
| 46 */ | |
| 47 | |
| 48 #if DCTSIZE != 8 | |
| 49 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |
| 50 #endif | |
| 51 | |
| 52 | |
| 53 /* | |
| 54 * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT | |
| 55 * on each column. Direct algorithms are also available, but they are | |
| 56 * much more complex and seem not to be any faster when reduced to code. | |
| 57 * | |
| 58 * The poop on this scaling stuff is as follows: | |
| 59 * | |
| 60 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) | |
| 61 * larger than the true IDCT outputs. The final outputs are therefore | |
| 62 * a factor of N larger than desired; since N=8 this can be cured by | |
| 63 * a simple right shift at the end of the algorithm. The advantage of | |
| 64 * this arrangement is that we save two multiplications per 1-D IDCT, | |
| 65 * because the y0 and y4 inputs need not be divided by sqrt(N). | |
| 66 * | |
| 67 * We have to do addition and subtraction of the integer inputs, which | |
| 68 * is no problem, and multiplication by fractional constants, which is | |
| 69 * a problem to do in integer arithmetic. We multiply all the constants | |
| 70 * by CONST_SCALE and convert them to integer constants (thus retaining | |
| 71 * CONST_BITS bits of precision in the constants). After doing a | |
| 72 * multiplication we have to divide the product by CONST_SCALE, with proper | |
| 73 * rounding, to produce the correct output. This division can be done | |
| 74 * cheaply as a right shift of CONST_BITS bits. We postpone shifting | |
| 75 * as long as possible so that partial sums can be added together with | |
| 76 * full fractional precision. | |
| 77 * | |
| 78 * The outputs of the first pass are scaled up by PASS1_BITS bits so that | |
| 79 * they are represented to better-than-integral precision. These outputs | |
| 80 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word | |
| 81 * with the recommended scaling. (To scale up 12-bit sample data further, an | |
| 82 * intermediate int32 array would be needed.) | |
| 83 * | |
| 84 * To avoid overflow of the 32-bit intermediate results in pass 2, we must | |
| 85 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis | |
| 86 * shows that the values given below are the most effective. | |
| 87 */ | |
| 88 | |
| 89 #ifdef EIGHT_BIT_SAMPLES | |
| 90 #define PASS1_BITS 2 | |
| 91 #else | |
| 92 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ | |
| 93 #endif | |
| 94 | |
| 95 #define ONE ((INT32) 1) | |
| 96 | |
| 97 #define CONST_SCALE (ONE << CONST_BITS) | |
| 98 | |
| 99 /* Convert a positive real constant to an integer scaled by CONST_SCALE. | |
| 100 * IMPORTANT: if your compiler doesn't do this arithmetic at compile time, | |
| 101 * you will pay a significant penalty in run time. In that case, figure | |
| 102 * the correct integer constant values and insert them by hand. | |
| 103 */ | |
| 104 | |
| 105 /* Actually FIX is no longer used, we precomputed them all */ | |
| 106 #define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5)) | |
| 107 | |
| 108 /* Descale and correctly round an INT32 value that's scaled by N bits. | |
| 109 * We assume RIGHT_SHIFT rounds towards minus infinity, so adding | |
| 110 * the fudge factor is correct for either sign of X. | |
| 111 */ | |
| 112 | |
| 113 #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) | |
| 114 | |
| 115 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. | |
| 116 * For 8-bit samples with the recommended scaling, all the variable | |
| 117 * and constant values involved are no more than 16 bits wide, so a | |
| 118 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply; | |
| 119 * this provides a useful speedup on many machines. | |
| 120 * There is no way to specify a 16x16->32 multiply in portable C, but | |
| 121 * some C compilers will do the right thing if you provide the correct | |
| 122 * combination of casts. | |
| 123 * NB: for 12-bit samples, a full 32-bit multiplication will be needed. | |
| 124 */ | |
| 125 | |
| 126 #ifdef EIGHT_BIT_SAMPLES | |
| 127 #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ | |
| 128 #define MULTIPLY(var,const) (((INT16) (var)) * ((INT16) (const))) | |
| 129 #endif | |
| 130 #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ | |
| 131 #define MULTIPLY(var,const) (((INT16) (var)) * ((INT32) (const))) | |
| 132 #endif | |
| 133 #endif | |
| 134 | |
| 135 #ifndef MULTIPLY /* default definition */ | |
| 136 #define MULTIPLY(var,const) ((var) * (const)) | |
| 137 #endif | |
| 138 | |
| 139 | |
| 140 /* | |
| 141 Unlike our decoder where we approximate the FIXes, we need to use exact | |
| 142 ones here or successive P-frames will drift too much with Reference frame coding | |
| 143 */ | |
| 144 #define FIX_0_211164243 1730 | |
| 145 #define FIX_0_275899380 2260 | |
| 146 #define FIX_0_298631336 2446 | |
| 147 #define FIX_0_390180644 3196 | |
| 148 #define FIX_0_509795579 4176 | |
| 149 #define FIX_0_541196100 4433 | |
| 150 #define FIX_0_601344887 4926 | |
| 151 #define FIX_0_765366865 6270 | |
| 152 #define FIX_0_785694958 6436 | |
| 153 #define FIX_0_899976223 7373 | |
| 154 #define FIX_1_061594337 8697 | |
| 155 #define FIX_1_111140466 9102 | |
| 156 #define FIX_1_175875602 9633 | |
| 157 #define FIX_1_306562965 10703 | |
| 158 #define FIX_1_387039845 11363 | |
| 159 #define FIX_1_451774981 11893 | |
| 160 #define FIX_1_501321110 12299 | |
| 161 #define FIX_1_662939225 13623 | |
| 162 #define FIX_1_847759065 15137 | |
| 163 #define FIX_1_961570560 16069 | |
| 164 #define FIX_2_053119869 16819 | |
| 165 #define FIX_2_172734803 17799 | |
| 166 #define FIX_2_562915447 20995 | |
| 167 #define FIX_3_072711026 25172 | |
| 168 | |
| 169 /* | |
| 170 * Perform the inverse DCT on one block of coefficients. | |
| 171 */ | |
| 172 | |
| 173 void j_rev_dct(DCTBLOCK data) | |
| 174 { | |
| 175 INT32 tmp0, tmp1, tmp2, tmp3; | |
| 176 INT32 tmp10, tmp11, tmp12, tmp13; | |
| 177 INT32 z1, z2, z3, z4, z5; | |
| 178 INT32 d0, d1, d2, d3, d4, d5, d6, d7; | |
| 179 register DCTELEM *dataptr; | |
| 180 int rowctr; | |
| 181 | |
| 182 /* Pass 1: process rows. */ | |
| 183 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ | |
| 184 /* furthermore, we scale the results by 2**PASS1_BITS. */ | |
| 185 | |
| 186 dataptr = data; | |
| 187 | |
| 188 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { | |
| 189 /* Due to quantization, we will usually find that many of the input | |
| 190 * coefficients are zero, especially the AC terms. We can exploit this | |
| 191 * by short-circuiting the IDCT calculation for any row in which all | |
| 192 * the AC terms are zero. In that case each output is equal to the | |
| 193 * DC coefficient (with scale factor as needed). | |
| 194 * With typical images and quantization tables, half or more of the | |
| 195 * row DCT calculations can be simplified this way. | |
| 196 */ | |
| 197 | |
| 198 register int *idataptr = (int*)dataptr; | |
| 199 | |
|
36
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
200 /* WARNING: we do the same permutation as MMX idct to simplify the |
|
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
201 video core */ |
| 0 | 202 d0 = dataptr[0]; |
|
36
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
203 d2 = dataptr[1]; |
|
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
204 d4 = dataptr[2]; |
|
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
205 d6 = dataptr[3]; |
|
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
206 d1 = dataptr[4]; |
|
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
207 d3 = dataptr[5]; |
|
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
208 d5 = dataptr[6]; |
| 0 | 209 d7 = dataptr[7]; |
| 210 | |
|
36
23723a0ebd24
permuted coefs in normal IDCT to avoid having different cases there
glantau
parents:
0
diff
changeset
|
211 if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) { |
| 0 | 212 /* AC terms all zero */ |
| 213 if (d0) { | |
| 214 /* Compute a 32 bit value to assign. */ | |
| 215 DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS); | |
| 216 register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000); | |
| 217 | |
| 218 idataptr[0] = v; | |
| 219 idataptr[1] = v; | |
| 220 idataptr[2] = v; | |
| 221 idataptr[3] = v; | |
| 222 } | |
| 223 | |
| 224 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 225 continue; | |
| 226 } | |
| 227 | |
| 228 /* Even part: reverse the even part of the forward DCT. */ | |
| 229 /* The rotator is sqrt(2)*c(-6). */ | |
| 230 { | |
| 231 if (d6) { | |
| 232 if (d4) { | |
| 233 if (d2) { | |
| 234 if (d0) { | |
| 235 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ | |
| 236 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 237 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 238 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 239 | |
| 240 tmp0 = (d0 + d4) << CONST_BITS; | |
| 241 tmp1 = (d0 - d4) << CONST_BITS; | |
| 242 | |
| 243 tmp10 = tmp0 + tmp3; | |
| 244 tmp13 = tmp0 - tmp3; | |
| 245 tmp11 = tmp1 + tmp2; | |
| 246 tmp12 = tmp1 - tmp2; | |
| 247 } else { | |
| 248 /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */ | |
| 249 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 250 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 251 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 252 | |
| 253 tmp0 = d4 << CONST_BITS; | |
| 254 | |
| 255 tmp10 = tmp0 + tmp3; | |
| 256 tmp13 = tmp0 - tmp3; | |
| 257 tmp11 = tmp2 - tmp0; | |
| 258 tmp12 = -(tmp0 + tmp2); | |
| 259 } | |
| 260 } else { | |
| 261 if (d0) { | |
| 262 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ | |
| 263 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 264 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 265 | |
| 266 tmp0 = (d0 + d4) << CONST_BITS; | |
| 267 tmp1 = (d0 - d4) << CONST_BITS; | |
| 268 | |
| 269 tmp10 = tmp0 + tmp3; | |
| 270 tmp13 = tmp0 - tmp3; | |
| 271 tmp11 = tmp1 + tmp2; | |
| 272 tmp12 = tmp1 - tmp2; | |
| 273 } else { | |
| 274 /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */ | |
| 275 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 276 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 277 | |
| 278 tmp0 = d4 << CONST_BITS; | |
| 279 | |
| 280 tmp10 = tmp0 + tmp3; | |
| 281 tmp13 = tmp0 - tmp3; | |
| 282 tmp11 = tmp2 - tmp0; | |
| 283 tmp12 = -(tmp0 + tmp2); | |
| 284 } | |
| 285 } | |
| 286 } else { | |
| 287 if (d2) { | |
| 288 if (d0) { | |
| 289 /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */ | |
| 290 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 291 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 292 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 293 | |
| 294 tmp0 = d0 << CONST_BITS; | |
| 295 | |
| 296 tmp10 = tmp0 + tmp3; | |
| 297 tmp13 = tmp0 - tmp3; | |
| 298 tmp11 = tmp0 + tmp2; | |
| 299 tmp12 = tmp0 - tmp2; | |
| 300 } else { | |
| 301 /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */ | |
| 302 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 303 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 304 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 305 | |
| 306 tmp10 = tmp3; | |
| 307 tmp13 = -tmp3; | |
| 308 tmp11 = tmp2; | |
| 309 tmp12 = -tmp2; | |
| 310 } | |
| 311 } else { | |
| 312 if (d0) { | |
| 313 /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */ | |
| 314 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 315 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 316 | |
| 317 tmp0 = d0 << CONST_BITS; | |
| 318 | |
| 319 tmp10 = tmp0 + tmp3; | |
| 320 tmp13 = tmp0 - tmp3; | |
| 321 tmp11 = tmp0 + tmp2; | |
| 322 tmp12 = tmp0 - tmp2; | |
| 323 } else { | |
| 324 /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */ | |
| 325 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 326 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 327 | |
| 328 tmp10 = tmp3; | |
| 329 tmp13 = -tmp3; | |
| 330 tmp11 = tmp2; | |
| 331 tmp12 = -tmp2; | |
| 332 } | |
| 333 } | |
| 334 } | |
| 335 } else { | |
| 336 if (d4) { | |
| 337 if (d2) { | |
| 338 if (d0) { | |
| 339 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ | |
| 340 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 341 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 342 | |
| 343 tmp0 = (d0 + d4) << CONST_BITS; | |
| 344 tmp1 = (d0 - d4) << CONST_BITS; | |
| 345 | |
| 346 tmp10 = tmp0 + tmp3; | |
| 347 tmp13 = tmp0 - tmp3; | |
| 348 tmp11 = tmp1 + tmp2; | |
| 349 tmp12 = tmp1 - tmp2; | |
| 350 } else { | |
| 351 /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */ | |
| 352 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 353 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 354 | |
| 355 tmp0 = d4 << CONST_BITS; | |
| 356 | |
| 357 tmp10 = tmp0 + tmp3; | |
| 358 tmp13 = tmp0 - tmp3; | |
| 359 tmp11 = tmp2 - tmp0; | |
| 360 tmp12 = -(tmp0 + tmp2); | |
| 361 } | |
| 362 } else { | |
| 363 if (d0) { | |
| 364 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ | |
| 365 tmp10 = tmp13 = (d0 + d4) << CONST_BITS; | |
| 366 tmp11 = tmp12 = (d0 - d4) << CONST_BITS; | |
| 367 } else { | |
| 368 /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */ | |
| 369 tmp10 = tmp13 = d4 << CONST_BITS; | |
| 370 tmp11 = tmp12 = -tmp10; | |
| 371 } | |
| 372 } | |
| 373 } else { | |
| 374 if (d2) { | |
| 375 if (d0) { | |
| 376 /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */ | |
| 377 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 378 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 379 | |
| 380 tmp0 = d0 << CONST_BITS; | |
| 381 | |
| 382 tmp10 = tmp0 + tmp3; | |
| 383 tmp13 = tmp0 - tmp3; | |
| 384 tmp11 = tmp0 + tmp2; | |
| 385 tmp12 = tmp0 - tmp2; | |
| 386 } else { | |
| 387 /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */ | |
| 388 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 389 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 390 | |
| 391 tmp10 = tmp3; | |
| 392 tmp13 = -tmp3; | |
| 393 tmp11 = tmp2; | |
| 394 tmp12 = -tmp2; | |
| 395 } | |
| 396 } else { | |
| 397 if (d0) { | |
| 398 /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */ | |
| 399 tmp10 = tmp13 = tmp11 = tmp12 = d0 << CONST_BITS; | |
| 400 } else { | |
| 401 /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */ | |
| 402 tmp10 = tmp13 = tmp11 = tmp12 = 0; | |
| 403 } | |
| 404 } | |
| 405 } | |
| 406 } | |
| 407 | |
| 408 /* Odd part per figure 8; the matrix is unitary and hence its | |
| 409 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. | |
| 410 */ | |
| 411 | |
| 412 if (d7) { | |
| 413 if (d5) { | |
| 414 if (d3) { | |
| 415 if (d1) { | |
| 416 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ | |
| 417 z1 = d7 + d1; | |
| 418 z2 = d5 + d3; | |
| 419 z3 = d7 + d3; | |
| 420 z4 = d5 + d1; | |
| 421 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); | |
| 422 | |
| 423 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 424 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 425 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 426 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 427 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
| 428 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
| 429 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
| 430 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
| 431 | |
| 432 z3 += z5; | |
| 433 z4 += z5; | |
| 434 | |
| 435 tmp0 += z1 + z3; | |
| 436 tmp1 += z2 + z4; | |
| 437 tmp2 += z2 + z3; | |
| 438 tmp3 += z1 + z4; | |
| 439 } else { | |
| 440 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ | |
| 441 z2 = d5 + d3; | |
| 442 z3 = d7 + d3; | |
| 443 z5 = MULTIPLY(z3 + d5, FIX_1_175875602); | |
| 444 | |
| 445 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 446 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 447 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 448 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
| 449 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
| 450 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
| 451 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
| 452 | |
| 453 z3 += z5; | |
| 454 z4 += z5; | |
| 455 | |
| 456 tmp0 += z1 + z3; | |
| 457 tmp1 += z2 + z4; | |
| 458 tmp2 += z2 + z3; | |
| 459 tmp3 = z1 + z4; | |
| 460 } | |
| 461 } else { | |
| 462 if (d1) { | |
| 463 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ | |
| 464 z1 = d7 + d1; | |
| 465 z4 = d5 + d1; | |
| 466 z5 = MULTIPLY(d7 + z4, FIX_1_175875602); | |
| 467 | |
| 468 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 469 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 470 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 471 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
| 472 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
| 473 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
| 474 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
| 475 | |
| 476 z3 += z5; | |
| 477 z4 += z5; | |
| 478 | |
| 479 tmp0 += z1 + z3; | |
| 480 tmp1 += z2 + z4; | |
| 481 tmp2 = z2 + z3; | |
| 482 tmp3 += z1 + z4; | |
| 483 } else { | |
| 484 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ | |
| 485 tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
| 486 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
| 487 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
| 488 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
| 489 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
| 490 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
| 491 z5 = MULTIPLY(d5 + d7, FIX_1_175875602); | |
| 492 | |
| 493 z3 += z5; | |
| 494 z4 += z5; | |
| 495 | |
| 496 tmp0 += z3; | |
| 497 tmp1 += z4; | |
| 498 tmp2 = z2 + z3; | |
| 499 tmp3 = z1 + z4; | |
| 500 } | |
| 501 } | |
| 502 } else { | |
| 503 if (d3) { | |
| 504 if (d1) { | |
| 505 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ | |
| 506 z1 = d7 + d1; | |
| 507 z3 = d7 + d3; | |
| 508 z5 = MULTIPLY(z3 + d1, FIX_1_175875602); | |
| 509 | |
| 510 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 511 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 512 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 513 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
| 514 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
| 515 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
| 516 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
| 517 | |
| 518 z3 += z5; | |
| 519 z4 += z5; | |
| 520 | |
| 521 tmp0 += z1 + z3; | |
| 522 tmp1 = z2 + z4; | |
| 523 tmp2 += z2 + z3; | |
| 524 tmp3 += z1 + z4; | |
| 525 } else { | |
| 526 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ | |
| 527 z3 = d7 + d3; | |
| 528 | |
| 529 tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
| 530 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
| 531 tmp2 = MULTIPLY(d3, FIX_0_509795579); | |
| 532 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
| 533 z5 = MULTIPLY(z3, FIX_1_175875602); | |
| 534 z3 = MULTIPLY(-z3, FIX_0_785694958); | |
| 535 | |
| 536 tmp0 += z3; | |
| 537 tmp1 = z2 + z5; | |
| 538 tmp2 += z3; | |
| 539 tmp3 = z1 + z5; | |
| 540 } | |
| 541 } else { | |
| 542 if (d1) { | |
| 543 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ | |
| 544 z1 = d7 + d1; | |
| 545 z5 = MULTIPLY(z1, FIX_1_175875602); | |
| 546 | |
| 547 z1 = MULTIPLY(z1, FIX_0_275899380); | |
| 548 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
| 549 tmp0 = MULTIPLY(-d7, FIX_1_662939225); | |
| 550 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
| 551 tmp3 = MULTIPLY(d1, FIX_1_111140466); | |
| 552 | |
| 553 tmp0 += z1; | |
| 554 tmp1 = z4 + z5; | |
| 555 tmp2 = z3 + z5; | |
| 556 tmp3 += z1; | |
| 557 } else { | |
| 558 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ | |
| 559 tmp0 = MULTIPLY(-d7, FIX_1_387039845); | |
| 560 tmp1 = MULTIPLY(d7, FIX_1_175875602); | |
| 561 tmp2 = MULTIPLY(-d7, FIX_0_785694958); | |
| 562 tmp3 = MULTIPLY(d7, FIX_0_275899380); | |
| 563 } | |
| 564 } | |
| 565 } | |
| 566 } else { | |
| 567 if (d5) { | |
| 568 if (d3) { | |
| 569 if (d1) { | |
| 570 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ | |
| 571 z2 = d5 + d3; | |
| 572 z4 = d5 + d1; | |
| 573 z5 = MULTIPLY(d3 + z4, FIX_1_175875602); | |
| 574 | |
| 575 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 576 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 577 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 578 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
| 579 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
| 580 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
| 581 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
| 582 | |
| 583 z3 += z5; | |
| 584 z4 += z5; | |
| 585 | |
| 586 tmp0 = z1 + z3; | |
| 587 tmp1 += z2 + z4; | |
| 588 tmp2 += z2 + z3; | |
| 589 tmp3 += z1 + z4; | |
| 590 } else { | |
| 591 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ | |
| 592 z2 = d5 + d3; | |
| 593 | |
| 594 z5 = MULTIPLY(z2, FIX_1_175875602); | |
| 595 tmp1 = MULTIPLY(d5, FIX_1_662939225); | |
| 596 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
| 597 z2 = MULTIPLY(-z2, FIX_1_387039845); | |
| 598 tmp2 = MULTIPLY(d3, FIX_1_111140466); | |
| 599 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
| 600 | |
| 601 tmp0 = z3 + z5; | |
| 602 tmp1 += z2; | |
| 603 tmp2 += z2; | |
| 604 tmp3 = z4 + z5; | |
| 605 } | |
| 606 } else { | |
| 607 if (d1) { | |
| 608 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ | |
| 609 z4 = d5 + d1; | |
| 610 | |
| 611 z5 = MULTIPLY(z4, FIX_1_175875602); | |
| 612 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
| 613 tmp3 = MULTIPLY(d1, FIX_0_601344887); | |
| 614 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
| 615 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
| 616 z4 = MULTIPLY(z4, FIX_0_785694958); | |
| 617 | |
| 618 tmp0 = z1 + z5; | |
| 619 tmp1 += z4; | |
| 620 tmp2 = z2 + z5; | |
| 621 tmp3 += z4; | |
| 622 } else { | |
| 623 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ | |
| 624 tmp0 = MULTIPLY(d5, FIX_1_175875602); | |
| 625 tmp1 = MULTIPLY(d5, FIX_0_275899380); | |
| 626 tmp2 = MULTIPLY(-d5, FIX_1_387039845); | |
| 627 tmp3 = MULTIPLY(d5, FIX_0_785694958); | |
| 628 } | |
| 629 } | |
| 630 } else { | |
| 631 if (d3) { | |
| 632 if (d1) { | |
| 633 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ | |
| 634 z5 = d1 + d3; | |
| 635 tmp3 = MULTIPLY(d1, FIX_0_211164243); | |
| 636 tmp2 = MULTIPLY(-d3, FIX_1_451774981); | |
| 637 z1 = MULTIPLY(d1, FIX_1_061594337); | |
| 638 z2 = MULTIPLY(-d3, FIX_2_172734803); | |
| 639 z4 = MULTIPLY(z5, FIX_0_785694958); | |
| 640 z5 = MULTIPLY(z5, FIX_1_175875602); | |
| 641 | |
| 642 tmp0 = z1 - z4; | |
| 643 tmp1 = z2 + z4; | |
| 644 tmp2 += z5; | |
| 645 tmp3 += z5; | |
| 646 } else { | |
| 647 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ | |
| 648 tmp0 = MULTIPLY(-d3, FIX_0_785694958); | |
| 649 tmp1 = MULTIPLY(-d3, FIX_1_387039845); | |
| 650 tmp2 = MULTIPLY(-d3, FIX_0_275899380); | |
| 651 tmp3 = MULTIPLY(d3, FIX_1_175875602); | |
| 652 } | |
| 653 } else { | |
| 654 if (d1) { | |
| 655 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ | |
| 656 tmp0 = MULTIPLY(d1, FIX_0_275899380); | |
| 657 tmp1 = MULTIPLY(d1, FIX_0_785694958); | |
| 658 tmp2 = MULTIPLY(d1, FIX_1_175875602); | |
| 659 tmp3 = MULTIPLY(d1, FIX_1_387039845); | |
| 660 } else { | |
| 661 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ | |
| 662 tmp0 = tmp1 = tmp2 = tmp3 = 0; | |
| 663 } | |
| 664 } | |
| 665 } | |
| 666 } | |
| 667 } | |
| 668 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
| 669 | |
| 670 dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); | |
| 671 dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); | |
| 672 dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); | |
| 673 dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); | |
| 674 dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); | |
| 675 dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); | |
| 676 dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); | |
| 677 dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); | |
| 678 | |
| 679 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 680 } | |
| 681 | |
| 682 /* Pass 2: process columns. */ | |
| 683 /* Note that we must descale the results by a factor of 8 == 2**3, */ | |
| 684 /* and also undo the PASS1_BITS scaling. */ | |
| 685 | |
| 686 dataptr = data; | |
| 687 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { | |
| 688 /* Columns of zeroes can be exploited in the same way as we did with rows. | |
| 689 * However, the row calculation has created many nonzero AC terms, so the | |
| 690 * simplification applies less often (typically 5% to 10% of the time). | |
| 691 * On machines with very fast multiplication, it's possible that the | |
| 692 * test takes more time than it's worth. In that case this section | |
| 693 * may be commented out. | |
| 694 */ | |
| 695 | |
| 696 d0 = dataptr[DCTSIZE*0]; | |
| 697 d1 = dataptr[DCTSIZE*1]; | |
| 698 d2 = dataptr[DCTSIZE*2]; | |
| 699 d3 = dataptr[DCTSIZE*3]; | |
| 700 d4 = dataptr[DCTSIZE*4]; | |
| 701 d5 = dataptr[DCTSIZE*5]; | |
| 702 d6 = dataptr[DCTSIZE*6]; | |
| 703 d7 = dataptr[DCTSIZE*7]; | |
| 704 | |
| 705 /* Even part: reverse the even part of the forward DCT. */ | |
| 706 /* The rotator is sqrt(2)*c(-6). */ | |
| 707 if (d6) { | |
| 708 if (d4) { | |
| 709 if (d2) { | |
| 710 if (d0) { | |
| 711 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ | |
| 712 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 713 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 714 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 715 | |
| 716 tmp0 = (d0 + d4) << CONST_BITS; | |
| 717 tmp1 = (d0 - d4) << CONST_BITS; | |
| 718 | |
| 719 tmp10 = tmp0 + tmp3; | |
| 720 tmp13 = tmp0 - tmp3; | |
| 721 tmp11 = tmp1 + tmp2; | |
| 722 tmp12 = tmp1 - tmp2; | |
| 723 } else { | |
| 724 /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */ | |
| 725 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 726 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 727 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 728 | |
| 729 tmp0 = d4 << CONST_BITS; | |
| 730 | |
| 731 tmp10 = tmp0 + tmp3; | |
| 732 tmp13 = tmp0 - tmp3; | |
| 733 tmp11 = tmp2 - tmp0; | |
| 734 tmp12 = -(tmp0 + tmp2); | |
| 735 } | |
| 736 } else { | |
| 737 if (d0) { | |
| 738 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ | |
| 739 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 740 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 741 | |
| 742 tmp0 = (d0 + d4) << CONST_BITS; | |
| 743 tmp1 = (d0 - d4) << CONST_BITS; | |
| 744 | |
| 745 tmp10 = tmp0 + tmp3; | |
| 746 tmp13 = tmp0 - tmp3; | |
| 747 tmp11 = tmp1 + tmp2; | |
| 748 tmp12 = tmp1 - tmp2; | |
| 749 } else { | |
| 750 /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */ | |
| 751 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 752 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 753 | |
| 754 tmp0 = d4 << CONST_BITS; | |
| 755 | |
| 756 tmp10 = tmp0 + tmp3; | |
| 757 tmp13 = tmp0 - tmp3; | |
| 758 tmp11 = tmp2 - tmp0; | |
| 759 tmp12 = -(tmp0 + tmp2); | |
| 760 } | |
| 761 } | |
| 762 } else { | |
| 763 if (d2) { | |
| 764 if (d0) { | |
| 765 /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */ | |
| 766 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 767 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 768 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 769 | |
| 770 tmp0 = d0 << CONST_BITS; | |
| 771 | |
| 772 tmp10 = tmp0 + tmp3; | |
| 773 tmp13 = tmp0 - tmp3; | |
| 774 tmp11 = tmp0 + tmp2; | |
| 775 tmp12 = tmp0 - tmp2; | |
| 776 } else { | |
| 777 /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */ | |
| 778 z1 = MULTIPLY(d2 + d6, FIX_0_541196100); | |
| 779 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); | |
| 780 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); | |
| 781 | |
| 782 tmp10 = tmp3; | |
| 783 tmp13 = -tmp3; | |
| 784 tmp11 = tmp2; | |
| 785 tmp12 = -tmp2; | |
| 786 } | |
| 787 } else { | |
| 788 if (d0) { | |
| 789 /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */ | |
| 790 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 791 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 792 | |
| 793 tmp0 = d0 << CONST_BITS; | |
| 794 | |
| 795 tmp10 = tmp0 + tmp3; | |
| 796 tmp13 = tmp0 - tmp3; | |
| 797 tmp11 = tmp0 + tmp2; | |
| 798 tmp12 = tmp0 - tmp2; | |
| 799 } else { | |
| 800 /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */ | |
| 801 tmp2 = MULTIPLY(-d6, FIX_1_306562965); | |
| 802 tmp3 = MULTIPLY(d6, FIX_0_541196100); | |
| 803 | |
| 804 tmp10 = tmp3; | |
| 805 tmp13 = -tmp3; | |
| 806 tmp11 = tmp2; | |
| 807 tmp12 = -tmp2; | |
| 808 } | |
| 809 } | |
| 810 } | |
| 811 } else { | |
| 812 if (d4) { | |
| 813 if (d2) { | |
| 814 if (d0) { | |
| 815 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ | |
| 816 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 817 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 818 | |
| 819 tmp0 = (d0 + d4) << CONST_BITS; | |
| 820 tmp1 = (d0 - d4) << CONST_BITS; | |
| 821 | |
| 822 tmp10 = tmp0 + tmp3; | |
| 823 tmp13 = tmp0 - tmp3; | |
| 824 tmp11 = tmp1 + tmp2; | |
| 825 tmp12 = tmp1 - tmp2; | |
| 826 } else { | |
| 827 /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */ | |
| 828 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 829 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 830 | |
| 831 tmp0 = d4 << CONST_BITS; | |
| 832 | |
| 833 tmp10 = tmp0 + tmp3; | |
| 834 tmp13 = tmp0 - tmp3; | |
| 835 tmp11 = tmp2 - tmp0; | |
| 836 tmp12 = -(tmp0 + tmp2); | |
| 837 } | |
| 838 } else { | |
| 839 if (d0) { | |
| 840 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ | |
| 841 tmp10 = tmp13 = (d0 + d4) << CONST_BITS; | |
| 842 tmp11 = tmp12 = (d0 - d4) << CONST_BITS; | |
| 843 } else { | |
| 844 /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */ | |
| 845 tmp10 = tmp13 = d4 << CONST_BITS; | |
| 846 tmp11 = tmp12 = -tmp10; | |
| 847 } | |
| 848 } | |
| 849 } else { | |
| 850 if (d2) { | |
| 851 if (d0) { | |
| 852 /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */ | |
| 853 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 854 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 855 | |
| 856 tmp0 = d0 << CONST_BITS; | |
| 857 | |
| 858 tmp10 = tmp0 + tmp3; | |
| 859 tmp13 = tmp0 - tmp3; | |
| 860 tmp11 = tmp0 + tmp2; | |
| 861 tmp12 = tmp0 - tmp2; | |
| 862 } else { | |
| 863 /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */ | |
| 864 tmp2 = MULTIPLY(d2, FIX_0_541196100); | |
| 865 tmp3 = MULTIPLY(d2, FIX_1_306562965); | |
| 866 | |
| 867 tmp10 = tmp3; | |
| 868 tmp13 = -tmp3; | |
| 869 tmp11 = tmp2; | |
| 870 tmp12 = -tmp2; | |
| 871 } | |
| 872 } else { | |
| 873 if (d0) { | |
| 874 /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */ | |
| 875 tmp10 = tmp13 = tmp11 = tmp12 = d0 << CONST_BITS; | |
| 876 } else { | |
| 877 /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */ | |
| 878 tmp10 = tmp13 = tmp11 = tmp12 = 0; | |
| 879 } | |
| 880 } | |
| 881 } | |
| 882 } | |
| 883 | |
| 884 /* Odd part per figure 8; the matrix is unitary and hence its | |
| 885 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. | |
| 886 */ | |
| 887 if (d7) { | |
| 888 if (d5) { | |
| 889 if (d3) { | |
| 890 if (d1) { | |
| 891 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ | |
| 892 z1 = d7 + d1; | |
| 893 z2 = d5 + d3; | |
| 894 z3 = d7 + d3; | |
| 895 z4 = d5 + d1; | |
| 896 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); | |
| 897 | |
| 898 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 899 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 900 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 901 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 902 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
| 903 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
| 904 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
| 905 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
| 906 | |
| 907 z3 += z5; | |
| 908 z4 += z5; | |
| 909 | |
| 910 tmp0 += z1 + z3; | |
| 911 tmp1 += z2 + z4; | |
| 912 tmp2 += z2 + z3; | |
| 913 tmp3 += z1 + z4; | |
| 914 } else { | |
| 915 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ | |
| 916 z1 = d7; | |
| 917 z2 = d5 + d3; | |
| 918 z3 = d7 + d3; | |
| 919 z5 = MULTIPLY(z3 + d5, FIX_1_175875602); | |
| 920 | |
| 921 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 922 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 923 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 924 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
| 925 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
| 926 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
| 927 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
| 928 | |
| 929 z3 += z5; | |
| 930 z4 += z5; | |
| 931 | |
| 932 tmp0 += z1 + z3; | |
| 933 tmp1 += z2 + z4; | |
| 934 tmp2 += z2 + z3; | |
| 935 tmp3 = z1 + z4; | |
| 936 } | |
| 937 } else { | |
| 938 if (d1) { | |
| 939 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ | |
| 940 z1 = d7 + d1; | |
| 941 z2 = d5; | |
| 942 z3 = d7; | |
| 943 z4 = d5 + d1; | |
| 944 z5 = MULTIPLY(z3 + z4, FIX_1_175875602); | |
| 945 | |
| 946 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 947 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 948 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 949 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
| 950 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
| 951 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
| 952 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
| 953 | |
| 954 z3 += z5; | |
| 955 z4 += z5; | |
| 956 | |
| 957 tmp0 += z1 + z3; | |
| 958 tmp1 += z2 + z4; | |
| 959 tmp2 = z2 + z3; | |
| 960 tmp3 += z1 + z4; | |
| 961 } else { | |
| 962 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ | |
| 963 tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
| 964 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
| 965 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
| 966 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
| 967 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
| 968 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
| 969 z5 = MULTIPLY(d5 + d7, FIX_1_175875602); | |
| 970 | |
| 971 z3 += z5; | |
| 972 z4 += z5; | |
| 973 | |
| 974 tmp0 += z3; | |
| 975 tmp1 += z4; | |
| 976 tmp2 = z2 + z3; | |
| 977 tmp3 = z1 + z4; | |
| 978 } | |
| 979 } | |
| 980 } else { | |
| 981 if (d3) { | |
| 982 if (d1) { | |
| 983 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ | |
| 984 z1 = d7 + d1; | |
| 985 z3 = d7 + d3; | |
| 986 z5 = MULTIPLY(z3 + d1, FIX_1_175875602); | |
| 987 | |
| 988 tmp0 = MULTIPLY(d7, FIX_0_298631336); | |
| 989 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 990 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 991 z1 = MULTIPLY(-z1, FIX_0_899976223); | |
| 992 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
| 993 z3 = MULTIPLY(-z3, FIX_1_961570560); | |
| 994 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
| 995 | |
| 996 z3 += z5; | |
| 997 z4 += z5; | |
| 998 | |
| 999 tmp0 += z1 + z3; | |
| 1000 tmp1 = z2 + z4; | |
| 1001 tmp2 += z2 + z3; | |
| 1002 tmp3 += z1 + z4; | |
| 1003 } else { | |
| 1004 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ | |
| 1005 z3 = d7 + d3; | |
| 1006 | |
| 1007 tmp0 = MULTIPLY(-d7, FIX_0_601344887); | |
| 1008 z1 = MULTIPLY(-d7, FIX_0_899976223); | |
| 1009 tmp2 = MULTIPLY(d3, FIX_0_509795579); | |
| 1010 z2 = MULTIPLY(-d3, FIX_2_562915447); | |
| 1011 z5 = MULTIPLY(z3, FIX_1_175875602); | |
| 1012 z3 = MULTIPLY(-z3, FIX_0_785694958); | |
| 1013 | |
| 1014 tmp0 += z3; | |
| 1015 tmp1 = z2 + z5; | |
| 1016 tmp2 += z3; | |
| 1017 tmp3 = z1 + z5; | |
| 1018 } | |
| 1019 } else { | |
| 1020 if (d1) { | |
| 1021 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ | |
| 1022 z1 = d7 + d1; | |
| 1023 z5 = MULTIPLY(z1, FIX_1_175875602); | |
| 1024 | |
| 1025 z1 = MULTIPLY(z1, FIX_0_275899380); | |
| 1026 z3 = MULTIPLY(-d7, FIX_1_961570560); | |
| 1027 tmp0 = MULTIPLY(-d7, FIX_1_662939225); | |
| 1028 z4 = MULTIPLY(-d1, FIX_0_390180644); | |
| 1029 tmp3 = MULTIPLY(d1, FIX_1_111140466); | |
| 1030 | |
| 1031 tmp0 += z1; | |
| 1032 tmp1 = z4 + z5; | |
| 1033 tmp2 = z3 + z5; | |
| 1034 tmp3 += z1; | |
| 1035 } else { | |
| 1036 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ | |
| 1037 tmp0 = MULTIPLY(-d7, FIX_1_387039845); | |
| 1038 tmp1 = MULTIPLY(d7, FIX_1_175875602); | |
| 1039 tmp2 = MULTIPLY(-d7, FIX_0_785694958); | |
| 1040 tmp3 = MULTIPLY(d7, FIX_0_275899380); | |
| 1041 } | |
| 1042 } | |
| 1043 } | |
| 1044 } else { | |
| 1045 if (d5) { | |
| 1046 if (d3) { | |
| 1047 if (d1) { | |
| 1048 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ | |
| 1049 z2 = d5 + d3; | |
| 1050 z4 = d5 + d1; | |
| 1051 z5 = MULTIPLY(d3 + z4, FIX_1_175875602); | |
| 1052 | |
| 1053 tmp1 = MULTIPLY(d5, FIX_2_053119869); | |
| 1054 tmp2 = MULTIPLY(d3, FIX_3_072711026); | |
| 1055 tmp3 = MULTIPLY(d1, FIX_1_501321110); | |
| 1056 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
| 1057 z2 = MULTIPLY(-z2, FIX_2_562915447); | |
| 1058 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
| 1059 z4 = MULTIPLY(-z4, FIX_0_390180644); | |
| 1060 | |
| 1061 z3 += z5; | |
| 1062 z4 += z5; | |
| 1063 | |
| 1064 tmp0 = z1 + z3; | |
| 1065 tmp1 += z2 + z4; | |
| 1066 tmp2 += z2 + z3; | |
| 1067 tmp3 += z1 + z4; | |
| 1068 } else { | |
| 1069 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ | |
| 1070 z2 = d5 + d3; | |
| 1071 | |
| 1072 z5 = MULTIPLY(z2, FIX_1_175875602); | |
| 1073 tmp1 = MULTIPLY(d5, FIX_1_662939225); | |
| 1074 z4 = MULTIPLY(-d5, FIX_0_390180644); | |
| 1075 z2 = MULTIPLY(-z2, FIX_1_387039845); | |
| 1076 tmp2 = MULTIPLY(d3, FIX_1_111140466); | |
| 1077 z3 = MULTIPLY(-d3, FIX_1_961570560); | |
| 1078 | |
| 1079 tmp0 = z3 + z5; | |
| 1080 tmp1 += z2; | |
| 1081 tmp2 += z2; | |
| 1082 tmp3 = z4 + z5; | |
| 1083 } | |
| 1084 } else { | |
| 1085 if (d1) { | |
| 1086 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ | |
| 1087 z4 = d5 + d1; | |
| 1088 | |
| 1089 z5 = MULTIPLY(z4, FIX_1_175875602); | |
| 1090 z1 = MULTIPLY(-d1, FIX_0_899976223); | |
| 1091 tmp3 = MULTIPLY(d1, FIX_0_601344887); | |
| 1092 tmp1 = MULTIPLY(-d5, FIX_0_509795579); | |
| 1093 z2 = MULTIPLY(-d5, FIX_2_562915447); | |
| 1094 z4 = MULTIPLY(z4, FIX_0_785694958); | |
| 1095 | |
| 1096 tmp0 = z1 + z5; | |
| 1097 tmp1 += z4; | |
| 1098 tmp2 = z2 + z5; | |
| 1099 tmp3 += z4; | |
| 1100 } else { | |
| 1101 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ | |
| 1102 tmp0 = MULTIPLY(d5, FIX_1_175875602); | |
| 1103 tmp1 = MULTIPLY(d5, FIX_0_275899380); | |
| 1104 tmp2 = MULTIPLY(-d5, FIX_1_387039845); | |
| 1105 tmp3 = MULTIPLY(d5, FIX_0_785694958); | |
| 1106 } | |
| 1107 } | |
| 1108 } else { | |
| 1109 if (d3) { | |
| 1110 if (d1) { | |
| 1111 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ | |
| 1112 z5 = d1 + d3; | |
| 1113 tmp3 = MULTIPLY(d1, FIX_0_211164243); | |
| 1114 tmp2 = MULTIPLY(-d3, FIX_1_451774981); | |
| 1115 z1 = MULTIPLY(d1, FIX_1_061594337); | |
| 1116 z2 = MULTIPLY(-d3, FIX_2_172734803); | |
| 1117 z4 = MULTIPLY(z5, FIX_0_785694958); | |
| 1118 z5 = MULTIPLY(z5, FIX_1_175875602); | |
| 1119 | |
| 1120 tmp0 = z1 - z4; | |
| 1121 tmp1 = z2 + z4; | |
| 1122 tmp2 += z5; | |
| 1123 tmp3 += z5; | |
| 1124 } else { | |
| 1125 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ | |
| 1126 tmp0 = MULTIPLY(-d3, FIX_0_785694958); | |
| 1127 tmp1 = MULTIPLY(-d3, FIX_1_387039845); | |
| 1128 tmp2 = MULTIPLY(-d3, FIX_0_275899380); | |
| 1129 tmp3 = MULTIPLY(d3, FIX_1_175875602); | |
| 1130 } | |
| 1131 } else { | |
| 1132 if (d1) { | |
| 1133 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ | |
| 1134 tmp0 = MULTIPLY(d1, FIX_0_275899380); | |
| 1135 tmp1 = MULTIPLY(d1, FIX_0_785694958); | |
| 1136 tmp2 = MULTIPLY(d1, FIX_1_175875602); | |
| 1137 tmp3 = MULTIPLY(d1, FIX_1_387039845); | |
| 1138 } else { | |
| 1139 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ | |
| 1140 tmp0 = tmp1 = tmp2 = tmp3 = 0; | |
| 1141 } | |
| 1142 } | |
| 1143 } | |
| 1144 } | |
| 1145 | |
| 1146 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
| 1147 | |
| 1148 dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3, | |
| 1149 CONST_BITS+PASS1_BITS+3); | |
| 1150 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3, | |
| 1151 CONST_BITS+PASS1_BITS+3); | |
| 1152 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2, | |
| 1153 CONST_BITS+PASS1_BITS+3); | |
| 1154 dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2, | |
| 1155 CONST_BITS+PASS1_BITS+3); | |
| 1156 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1, | |
| 1157 CONST_BITS+PASS1_BITS+3); | |
| 1158 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1, | |
| 1159 CONST_BITS+PASS1_BITS+3); | |
| 1160 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0, | |
| 1161 CONST_BITS+PASS1_BITS+3); | |
| 1162 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0, | |
| 1163 CONST_BITS+PASS1_BITS+3); | |
| 1164 | |
| 1165 dataptr++; /* advance pointer to next column */ | |
| 1166 } | |
| 1167 } | |
| 1168 | |
|
440
000aeeac27a2
* started to cleanup name clashes for onetime compilation
kabi
parents:
36
diff
changeset
|
1169 #undef FIX |
|
000aeeac27a2
* started to cleanup name clashes for onetime compilation
kabi
parents:
36
diff
changeset
|
1170 #undef CONST_BITS |
