|
808
|
1 /*
|
|
|
2 * jrevdct.c
|
|
|
3 *
|
|
|
4 * This file is part of the Independent JPEG Group's software.
|
|
|
5 *
|
|
|
6 * The authors make NO WARRANTY or representation, either express or implied,
|
|
|
7 * with respect to this software, its quality, accuracy, merchantability, or
|
|
|
8 * fitness for a particular purpose. This software is provided "AS IS", and
|
|
|
9 * you, its user, assume the entire risk as to its quality and accuracy.
|
|
|
10 *
|
|
|
11 * This software is copyright (C) 1991, 1992, Thomas G. Lane.
|
|
|
12 * All Rights Reserved except as specified below.
|
|
|
13 *
|
|
|
14 * Permission is hereby granted to use, copy, modify, and distribute this
|
|
|
15 * software (or portions thereof) for any purpose, without fee, subject to
|
|
|
16 * these conditions:
|
|
|
17 * (1) If any part of the source code for this software is distributed, then
|
|
|
18 * this README file must be included, with this copyright and no-warranty
|
|
|
19 * notice unaltered; and any additions, deletions, or changes to the original
|
|
|
20 * files must be clearly indicated in accompanying documentation.
|
|
|
21 * (2) If only executable code is distributed, then the accompanying
|
|
|
22 * documentation must state that "this software is based in part on the work
|
|
|
23 * of the Independent JPEG Group".
|
|
|
24 * (3) Permission for use of this software is granted only if the user accepts
|
|
|
25 * full responsibility for any undesirable consequences; the authors accept
|
|
|
26 * NO LIABILITY for damages of any kind.
|
|
|
27 *
|
|
|
28 * These conditions apply to any software derived from or based on the IJG
|
|
|
29 * code, not just to the unmodified library. If you use our work, you ought
|
|
|
30 * to acknowledge us.
|
|
|
31 *
|
|
|
32 * Permission is NOT granted for the use of any IJG author's name or company
|
|
|
33 * name in advertising or publicity relating to this software or products
|
|
|
34 * derived from it. This software may be referred to only as "the Independent
|
|
|
35 * JPEG Group's software".
|
|
|
36 *
|
|
|
37 * We specifically permit and encourage the use of this software as the basis
|
|
|
38 * of commercial products, provided that all warranty or liability claims are
|
|
|
39 * assumed by the product vendor.
|
|
|
40 *
|
|
|
41 * This file contains the basic inverse-DCT transformation subroutine.
|
|
|
42 *
|
|
|
43 * This implementation is based on an algorithm described in
|
|
|
44 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
|
|
|
45 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
|
|
|
46 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
|
|
|
47 * The primary algorithm described there uses 11 multiplies and 29 adds.
|
|
|
48 * We use their alternate method with 12 multiplies and 32 adds.
|
|
|
49 * The advantage of this method is that no data path contains more than one
|
|
|
50 * multiplication; this allows a very simple and accurate implementation in
|
|
|
51 * scaled fixed-point arithmetic, with a minimal number of shifts.
|
|
|
52 *
|
|
|
53 * I've made lots of modifications to attempt to take advantage of the
|
|
|
54 * sparse nature of the DCT matrices we're getting. Although the logic
|
|
|
55 * is cumbersome, it's straightforward and the resulting code is much
|
|
|
56 * faster.
|
|
|
57 *
|
|
|
58 * A better way to do this would be to pass in the DCT block as a sparse
|
|
|
59 * matrix, perhaps with the difference cases encoded.
|
|
|
60 */
|
|
|
61
|
|
|
62 /**
|
|
|
63 * @file jrevdct.c
|
|
|
64 * Independent JPEG Group's LLM idct.
|
|
|
65 */
|
|
|
66
|
|
|
67 #include "common.h"
|
|
|
68 #include "dsputil.h"
|
|
|
69
|
|
|
70 #define EIGHT_BIT_SAMPLES
|
|
|
71
|
|
|
72 #define DCTSIZE 8
|
|
|
73 #define DCTSIZE2 64
|
|
|
74
|
|
|
75 #define GLOBAL
|
|
|
76
|
|
|
77 #define RIGHT_SHIFT(x, n) ((x) >> (n))
|
|
|
78
|
|
|
79 typedef DCTELEM DCTBLOCK[DCTSIZE2];
|
|
|
80
|
|
|
81 #define CONST_BITS 13
|
|
|
82
|
|
|
83 /*
|
|
|
84 * This routine is specialized to the case DCTSIZE = 8.
|
|
|
85 */
|
|
|
86
|
|
|
87 #if DCTSIZE != 8
|
|
|
88 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
|
|
89 #endif
|
|
|
90
|
|
|
91
|
|
|
92 /*
|
|
|
93 * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT
|
|
|
94 * on each column. Direct algorithms are also available, but they are
|
|
|
95 * much more complex and seem not to be any faster when reduced to code.
|
|
|
96 *
|
|
|
97 * The poop on this scaling stuff is as follows:
|
|
|
98 *
|
|
|
99 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
|
|
|
100 * larger than the true IDCT outputs. The final outputs are therefore
|
|
|
101 * a factor of N larger than desired; since N=8 this can be cured by
|
|
|
102 * a simple right shift at the end of the algorithm. The advantage of
|
|
|
103 * this arrangement is that we save two multiplications per 1-D IDCT,
|
|
|
104 * because the y0 and y4 inputs need not be divided by sqrt(N).
|
|
|
105 *
|
|
|
106 * We have to do addition and subtraction of the integer inputs, which
|
|
|
107 * is no problem, and multiplication by fractional constants, which is
|
|
|
108 * a problem to do in integer arithmetic. We multiply all the constants
|
|
|
109 * by CONST_SCALE and convert them to integer constants (thus retaining
|
|
|
110 * CONST_BITS bits of precision in the constants). After doing a
|
|
|
111 * multiplication we have to divide the product by CONST_SCALE, with proper
|
|
|
112 * rounding, to produce the correct output. This division can be done
|
|
|
113 * cheaply as a right shift of CONST_BITS bits. We postpone shifting
|
|
|
114 * as long as possible so that partial sums can be added together with
|
|
|
115 * full fractional precision.
|
|
|
116 *
|
|
|
117 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
|
|
|
118 * they are represented to better-than-integral precision. These outputs
|
|
|
119 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
|
|
|
120 * with the recommended scaling. (To scale up 12-bit sample data further, an
|
|
|
121 * intermediate int32 array would be needed.)
|
|
|
122 *
|
|
|
123 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
|
|
|
124 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
|
|
|
125 * shows that the values given below are the most effective.
|
|
|
126 */
|
|
|
127
|
|
|
128 #ifdef EIGHT_BIT_SAMPLES
|
|
|
129 #define PASS1_BITS 2
|
|
|
130 #else
|
|
|
131 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
|
|
132 #endif
|
|
|
133
|
|
|
134 #define ONE ((int32_t) 1)
|
|
|
135
|
|
|
136 #define CONST_SCALE (ONE << CONST_BITS)
|
|
|
137
|
|
|
138 /* Convert a positive real constant to an integer scaled by CONST_SCALE.
|
|
|
139 * IMPORTANT: if your compiler doesn't do this arithmetic at compile time,
|
|
|
140 * you will pay a significant penalty in run time. In that case, figure
|
|
|
141 * the correct integer constant values and insert them by hand.
|
|
|
142 */
|
|
|
143
|
|
|
144 /* Actually FIX is no longer used, we precomputed them all */
|
|
|
145 #define FIX(x) ((int32_t) ((x) * CONST_SCALE + 0.5))
|
|
|
146
|
|
|
147 /* Descale and correctly round an int32_t value that's scaled by N bits.
|
|
|
148 * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
|
|
|
149 * the fudge factor is correct for either sign of X.
|
|
|
150 */
|
|
|
151
|
|
|
152 #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
|
|
|
153
|
|
|
154 /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
|
|
|
155 * For 8-bit samples with the recommended scaling, all the variable
|
|
|
156 * and constant values involved are no more than 16 bits wide, so a
|
|
|
157 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply;
|
|
|
158 * this provides a useful speedup on many machines.
|
|
|
159 * There is no way to specify a 16x16->32 multiply in portable C, but
|
|
|
160 * some C compilers will do the right thing if you provide the correct
|
|
|
161 * combination of casts.
|
|
|
162 * NB: for 12-bit samples, a full 32-bit multiplication will be needed.
|
|
|
163 */
|
|
|
164
|
|
|
165 #ifdef EIGHT_BIT_SAMPLES
|
|
|
166 #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
|
|
|
167 #define MULTIPLY(var,const) (((int16_t) (var)) * ((int16_t) (const)))
|
|
|
168 #endif
|
|
|
169 #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
|
|
|
170 #define MULTIPLY(var,const) (((int16_t) (var)) * ((int32_t) (const)))
|
|
|
171 #endif
|
|
|
172 #endif
|
|
|
173
|
|
|
174 #ifndef MULTIPLY /* default definition */
|
|
|
175 #define MULTIPLY(var,const) ((var) * (const))
|
|
|
176 #endif
|
|
|
177
|
|
|
178
|
|
|
179 /*
|
|
|
180 Unlike our decoder where we approximate the FIXes, we need to use exact
|
|
|
181 ones here or successive P-frames will drift too much with Reference frame coding
|
|
|
182 */
|
|
|
183 #define FIX_0_211164243 1730
|
|
|
184 #define FIX_0_275899380 2260
|
|
|
185 #define FIX_0_298631336 2446
|
|
|
186 #define FIX_0_390180644 3196
|
|
|
187 #define FIX_0_509795579 4176
|
|
|
188 #define FIX_0_541196100 4433
|
|
|
189 #define FIX_0_601344887 4926
|
|
|
190 #define FIX_0_765366865 6270
|
|
|
191 #define FIX_0_785694958 6436
|
|
|
192 #define FIX_0_899976223 7373
|
|
|
193 #define FIX_1_061594337 8697
|
|
|
194 #define FIX_1_111140466 9102
|
|
|
195 #define FIX_1_175875602 9633
|
|
|
196 #define FIX_1_306562965 10703
|
|
|
197 #define FIX_1_387039845 11363
|
|
|
198 #define FIX_1_451774981 11893
|
|
|
199 #define FIX_1_501321110 12299
|
|
|
200 #define FIX_1_662939225 13623
|
|
|
201 #define FIX_1_847759065 15137
|
|
|
202 #define FIX_1_961570560 16069
|
|
|
203 #define FIX_2_053119869 16819
|
|
|
204 #define FIX_2_172734803 17799
|
|
|
205 #define FIX_2_562915447 20995
|
|
|
206 #define FIX_3_072711026 25172
|
|
|
207
|
|
|
208 /*
|
|
|
209 * Perform the inverse DCT on one block of coefficients.
|
|
|
210 */
|
|
|
211
|
|
|
212 void j_rev_dct(DCTBLOCK data)
|
|
|
213 {
|
|
|
214 int32_t tmp0, tmp1, tmp2, tmp3;
|
|
|
215 int32_t tmp10, tmp11, tmp12, tmp13;
|
|
|
216 int32_t z1, z2, z3, z4, z5;
|
|
|
217 int32_t d0, d1, d2, d3, d4, d5, d6, d7;
|
|
|
218 register DCTELEM *dataptr;
|
|
|
219 int rowctr;
|
|
|
220
|
|
|
221 /* Pass 1: process rows. */
|
|
|
222 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
|
|
|
223 /* furthermore, we scale the results by 2**PASS1_BITS. */
|
|
|
224
|
|
|
225 dataptr = data;
|
|
|
226
|
|
|
227 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
|
|
|
228 /* Due to quantization, we will usually find that many of the input
|
|
|
229 * coefficients are zero, especially the AC terms. We can exploit this
|
|
|
230 * by short-circuiting the IDCT calculation for any row in which all
|
|
|
231 * the AC terms are zero. In that case each output is equal to the
|
|
|
232 * DC coefficient (with scale factor as needed).
|
|
|
233 * With typical images and quantization tables, half or more of the
|
|
|
234 * row DCT calculations can be simplified this way.
|
|
|
235 */
|
|
|
236
|
|
|
237 register int *idataptr = (int*)dataptr;
|
|
|
238
|
|
|
239 /* WARNING: we do the same permutation as MMX idct to simplify the
|
|
|
240 video core */
|
|
|
241 d0 = dataptr[0];
|
|
|
242 d2 = dataptr[1];
|
|
|
243 d4 = dataptr[2];
|
|
|
244 d6 = dataptr[3];
|
|
|
245 d1 = dataptr[4];
|
|
|
246 d3 = dataptr[5];
|
|
|
247 d5 = dataptr[6];
|
|
|
248 d7 = dataptr[7];
|
|
|
249
|
|
|
250 if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) {
|
|
|
251 /* AC terms all zero */
|
|
|
252 if (d0) {
|
|
|
253 /* Compute a 32 bit value to assign. */
|
|
|
254 DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS);
|
|
|
255 register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
|
|
|
256
|
|
|
257 idataptr[0] = v;
|
|
|
258 idataptr[1] = v;
|
|
|
259 idataptr[2] = v;
|
|
|
260 idataptr[3] = v;
|
|
|
261 }
|
|
|
262
|
|
|
263 dataptr += DCTSIZE; /* advance pointer to next row */
|
|
|
264 continue;
|
|
|
265 }
|
|
|
266
|
|
|
267 /* Even part: reverse the even part of the forward DCT. */
|
|
|
268 /* The rotator is sqrt(2)*c(-6). */
|
|
|
269 {
|
|
|
270 if (d6) {
|
|
|
271 if (d2) {
|
|
|
272 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
|
|
|
273 z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
|
|
|
274 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
|
|
|
275 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
|
|
|
276
|
|
|
277 tmp0 = (d0 + d4) << CONST_BITS;
|
|
|
278 tmp1 = (d0 - d4) << CONST_BITS;
|
|
|
279
|
|
|
280 tmp10 = tmp0 + tmp3;
|
|
|
281 tmp13 = tmp0 - tmp3;
|
|
|
282 tmp11 = tmp1 + tmp2;
|
|
|
283 tmp12 = tmp1 - tmp2;
|
|
|
284 } else {
|
|
|
285 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
|
|
|
286 tmp2 = MULTIPLY(-d6, FIX_1_306562965);
|
|
|
287 tmp3 = MULTIPLY(d6, FIX_0_541196100);
|
|
|
288
|
|
|
289 tmp0 = (d0 + d4) << CONST_BITS;
|
|
|
290 tmp1 = (d0 - d4) << CONST_BITS;
|
|
|
291
|
|
|
292 tmp10 = tmp0 + tmp3;
|
|
|
293 tmp13 = tmp0 - tmp3;
|
|
|
294 tmp11 = tmp1 + tmp2;
|
|
|
295 tmp12 = tmp1 - tmp2;
|
|
|
296 }
|
|
|
297 } else {
|
|
|
298 if (d2) {
|
|
|
299 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
|
|
|
300 tmp2 = MULTIPLY(d2, FIX_0_541196100);
|
|
|
301 tmp3 = MULTIPLY(d2, FIX_1_306562965);
|
|
|
302
|
|
|
303 tmp0 = (d0 + d4) << CONST_BITS;
|
|
|
304 tmp1 = (d0 - d4) << CONST_BITS;
|
|
|
305
|
|
|
306 tmp10 = tmp0 + tmp3;
|
|
|
307 tmp13 = tmp0 - tmp3;
|
|
|
308 tmp11 = tmp1 + tmp2;
|
|
|
309 tmp12 = tmp1 - tmp2;
|
|
|
310 } else {
|
|
|
311 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
|
|
|
312 tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
|
|
|
313 tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
|
|
|
314 }
|
|
|
315 }
|
|
|
316
|
|
|
317 /* Odd part per figure 8; the matrix is unitary and hence its
|
|
|
318 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
|
|
|
319 */
|
|
|
320
|
|
|
321 if (d7) {
|
|
|
322 if (d5) {
|
|
|
323 if (d3) {
|
|
|
324 if (d1) {
|
|
|
325 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
|
|
|
326 z1 = d7 + d1;
|
|
|
327 z2 = d5 + d3;
|
|
|
328 z3 = d7 + d3;
|
|
|
329 z4 = d5 + d1;
|
|
|
330 z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
|
|
|
331
|
|
|
332 tmp0 = MULTIPLY(d7, FIX_0_298631336);
|
|
|
333 tmp1 = MULTIPLY(d5, FIX_2_053119869);
|
|
|
334 tmp2 = MULTIPLY(d3, FIX_3_072711026);
|
|
|
335 tmp3 = MULTIPLY(d1, FIX_1_501321110);
|
|
|
336 z1 = MULTIPLY(-z1, FIX_0_899976223);
|
|
|
337 z2 = MULTIPLY(-z2, FIX_2_562915447);
|
|
|
338 z3 = MULTIPLY(-z3, FIX_1_961570560);
|
|
|
339 z4 = MULTIPLY(-z4, FIX_0_390180644);
|
|
|
340
|
|
|
341 z3 += z5;
|
|
|
342 z4 += z5;
|
|
|
343
|
|
|
344 tmp0 += z1 + z3;
|
|
|
345 tmp1 += z2 + z4;
|
|
|
346 tmp2 += z2 + z3;
|
|
|
347 tmp3 += z1 + z4;
|
|
|
348 } else {
|
|
|
349 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
|
|
|
350 z2 = d5 + d3;
|
|
|
351 z3 = d7 + d3;
|
|
|
352 z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
|
|
|
353
|
|
|
354 tmp0 = MULTIPLY(d7, FIX_0_298631336);
|
|
|
355 tmp1 = MULTIPLY(d5, FIX_2_053119869);
|
|
|
356 tmp2 = MULTIPLY(d3, FIX_3_072711026);
|
|
|
357 z1 = MULTIPLY(-d7, FIX_0_899976223);
|
|
|
358 z2 = MULTIPLY(-z2, FIX_2_562915447);
|
|
|
359 z3 = MULTIPLY(-z3, FIX_1_961570560);
|
|
|
360 z4 = MULTIPLY(-d5, FIX_0_390180644);
|
|
|
361
|
|
|
362 z3 += z5;
|
|
|
363 z4 += z5;
|
|
|
364
|
|
|
365 tmp0 += z1 + z3;
|
|
|
366 tmp1 += z2 + z4;
|
|
|
367 tmp2 += z2 + z3;
|
|
|
368 tmp3 = z1 + z4;
|
|
|
369 }
|
|
|
370 } else {
|
|
|
371 if (d1) {
|
|
|
372 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
|
|
|
373 z1 = d7 + d1;
|
|
|
374 z4 = d5 + d1;
|
|
|
375 z5 = MULTIPLY(d7 + z4, FIX_1_175875602);
|
|
|
376
|
|
|
377 tmp0 = MULTIPLY(d7, FIX_0_298631336);
|
|
|
378 tmp1 = MULTIPLY(d5, FIX_2_053119869);
|
|
|
379 tmp3 = MULTIPLY(d1, FIX_1_501321110);
|
|
|
380 z1 = MULTIPLY(-z1, FIX_0_899976223);
|
|
|
381 z2 = MULTIPLY(-d5, FIX_2_562915447);
|
|
|
382 z3 = MULTIPLY(-d7, FIX_1_961570560);
|
|
|
383 z4 = MULTIPLY(-z4, FIX_0_390180644);
|
|
|
384
|
|
|
385 z3 += z5;
|
|
|
386 z4 += z5;
|
|
|
387
|
|
|
388 tmp0 += z1 + z3;
|
|
|
389 tmp1 += z2 + z4;
|
|
|
390 tmp2 = z2 + z3;
|
|
|
391 tmp3 += z1 + z4;
|
|
|
392 } else {
|
|
|
393 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
|
|
|
394 tmp0 = MULTIPLY(-d7, FIX_0_601344887);
|
|
|
395 z1 = MULTIPLY(-d7, FIX_0_899976223);
|
|
|
396 z3 = MULTIPLY(-d7, FIX_1_961570560);
|
|
|
397 tmp1 = MULTIPLY(-d5, FIX_0_509795579);
|
|
|
398 z2 = MULTIPLY(-d5, FIX_2_562915447);
|
|
|
399 z4 = MULTIPLY(-d5, FIX_0_390180644);
|
|
|
400 z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
|
|
|
401
|
|
|
402 z3 += z5;
|
|
|
403 z4 += z5;
|
|
|
404
|
|
|
405 tmp0 += z3;
|
|
|
406 tmp1 += z4;
|
|
|
407 tmp2 = z2 + z3;
|
|
|
408 tmp3 = z1 + z4;
|
|
|
409 }
|
|
|
410 }
|
|
|
411 } else {
|
|
|
412 if (d3) {
|
|
|
413 if (d1) {
|
|
|
414 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
|
|
|
415 z1 = d7 + d1;
|
|
|
416 z3 = d7 + d3;
|
|
|
417 z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
|
|
|
418
|
|
|
419 tmp0 = MULTIPLY(d7, FIX_0_298631336);
|
|
|
420 tmp2 = MULTIPLY(d3, FIX_3_072711026);
|
|
|
421 tmp3 = MULTIPLY(d1, FIX_1_501321110);
|
|
|
422 z1 = MULTIPLY(-z1, FIX_0_899976223);
|
|
|
423 z2 = MULTIPLY(-d3, FIX_2_562915447);
|
|
|
424 z3 = MULTIPLY(-z3, FIX_1_961570560);
|
|
|
425 z4 = MULTIPLY(-d1, FIX_0_390180644);
|
|
|
426
|
|
|
427 z3 += z5;
|
|
|
428 z4 += z5;
|
|
|
429
|
|
|
430 tmp0 += z1 + z3;
|
|
|
431 tmp1 = z2 + z4;
|
|
|
432 tmp2 += z2 + z3;
|
|
|
433 tmp3 += z1 + z4;
|
|
|
434 } else {
|
|
|
435 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
|
|
|
436 z3 = d7 + d3;
|
|
|
437
|
|
|
438 tmp0 = MULTIPLY(-d7, FIX_0_601344887);
|
|
|
439 z1 = MULTIPLY(-d7, FIX_0_899976223);
|
|
|
440 tmp2 = MULTIPLY(d3, FIX_0_509795579);
|
|
|
441 z2 = MULTIPLY(-d3, FIX_2_562915447);
|
|
|
442 z5 = MULTIPLY(z3, FIX_1_175875602);
|
|
|
443 z3 = MULTIPLY(-z3, FIX_0_785694958);
|
|
|
444
|
|
|
445 tmp0 += z3;
|
|
|
446 tmp1 = z2 + z5;
|
|
|
447 tmp2 += z3;
|
|
|
448 tmp3 = z1 + z5;
|
|
|
449 }
|
|
|
450 } else {
|
|
|
451 if (d1) {
|
|
|
452 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
|
|
|
453 z1 = d7 + d1;
|
|
|
454 z5 = MULTIPLY(z1, FIX_1_175875602);
|
|
|
455
|
|
|
456 z1 = MULTIPLY(z1, FIX_0_275899380);
|
|
|
457 z3 = MULTIPLY(-d7, FIX_1_961570560);
|
|
|
458 tmp0 = MULTIPLY(-d7, FIX_1_662939225);
|
|
|
459 z4 = MULTIPLY(-d1, FIX_0_390180644);
|
|
|
460 tmp3 = MULTIPLY(d1, FIX_1_111140466);
|
|
|
461
|
|
|
462 tmp0 += z1;
|
|
|
463 tmp1 = z4 + z5;
|
|
|
464 tmp2 = z3 + z5;
|
|
|
465 tmp3 += z1;
|
|
|
466 } else {
|
|
|
467 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
|
|
|
468 tmp0 = MULTIPLY(-d7, FIX_1_387039845);
|
|
|
469 tmp1 = MULTIPLY(d7, FIX_1_175875602);
|
|
|
470 tmp2 = MULTIPLY(-d7, FIX_0_785694958);
|
|
|
471 tmp3 = MULTIPLY(d7, FIX_0_275899380);
|
|
|
472 }
|
|
|
473 }
|
|
|
474 }
|
|
|
475 } else {
|
|
|
476 if (d5) {
|
|
|
477 if (d3) {
|
|
|
478 if (d1) {
|
|
|
479 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
|
|
|
480 z2 = d5 + d3;
|
|
|
481 z4 = d5 + d1;
|
|
|
482 z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
|
|
|
483
|
|
|
484 tmp1 = MULTIPLY(d5, FIX_2_053119869);
|
|
|
485 tmp2 = MULTIPLY(d3, FIX_3_072711026);
|
|
|
486 tmp3 = MULTIPLY(d1, FIX_1_501321110);
|
|
|
487 z1 = MULTIPLY(-d1, FIX_0_899976223);
|
|
|
488 z2 = MULTIPLY(-z2, FIX_2_562915447);
|
|
|
489 z3 = MULTIPLY(-d3, FIX_1_961570560);
|
|
|
490 z4 = MULTIPLY(-z4, FIX_0_390180644);
|
|
|
491
|
|
|
492 z3 += z5;
|
|
|
493 z4 += z5;
|
|
|
494
|
|
|
495 tmp0 = z1 + z3;
|
|
|
496 tmp1 += z2 + z4;
|
|
|
497 tmp2 += z2 + z3;
|
|
|
498 tmp3 += z1 + z4;
|
|
|
499 } else {
|
|
|
500 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
|
|
|
501 z2 = d5 + d3;
|
|
|
502
|
|
|
503 z5 = MULTIPLY(z2, FIX_1_175875602);
|
|
|
504 tmp1 = MULTIPLY(d5, FIX_1_662939225);
|
|
|
505 z4 = MULTIPLY(-d5, FIX_0_390180644);
|
|
|
506 z2 = MULTIPLY(-z2, FIX_1_387039845);
|
|
|
507 tmp2 = MULTIPLY(d3, FIX_1_111140466);
|
|
|
508 z3 = MULTIPLY(-d3, FIX_1_961570560);
|
|
|
509
|
|
|
510 tmp0 = z3 + z5;
|
|
|
511 tmp1 += z2;
|
|
|
512 tmp2 += z2;
|
|
|
513 tmp3 = z4 + z5;
|
|
|
514 }
|
|
|
515 } else {
|
|
|
516 if (d1) {
|
|
|
517 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
|
|
|
518 z4 = d5 + d1;
|
|
|
519
|
|
|
520 z5 = MULTIPLY(z4, FIX_1_175875602);
|
|
|
521 z1 = MULTIPLY(-d1, FIX_0_899976223);
|
|
|
522 tmp3 = MULTIPLY(d1, FIX_0_601344887);
|
|
|
523 tmp1 = MULTIPLY(-d5, FIX_0_509795579);
|
|
|
524 z2 = MULTIPLY(-d5, FIX_2_562915447);
|
|
|
525 z4 = MULTIPLY(z4, FIX_0_785694958);
|
|
|
526
|
|
|
527 tmp0 = z1 + z5;
|
|
|
528 tmp1 += z4;
|
|
|
529 tmp2 = z2 + z5;
|
|
|
530 tmp3 += z4;
|
|
|
531 } else {
|
|
|
532 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
|
|
|
533 tmp0 = MULTIPLY(d5, FIX_1_175875602);
|
|
|
534 tmp1 = MULTIPLY(d5, FIX_0_275899380);
|
|
|
535 tmp2 = MULTIPLY(-d5, FIX_1_387039845);
|
|
|
536 tmp3 = MULTIPLY(d5, FIX_0_785694958);
|
|
|
537 }
|
|
|
538 }
|
|
|
539 } else {
|
|
|
540 if (d3) {
|
|
|
541 if (d1) {
|
|
|
542 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
|
|
|
543 z5 = d1 + d3;
|
|
|
544 tmp3 = MULTIPLY(d1, FIX_0_211164243);
|
|
|
545 tmp2 = MULTIPLY(-d3, FIX_1_451774981);
|
|
|
546 z1 = MULTIPLY(d1, FIX_1_061594337);
|
|
|
547 z2 = MULTIPLY(-d3, FIX_2_172734803);
|
|
|
548 z4 = MULTIPLY(z5, FIX_0_785694958);
|
|
|
549 z5 = MULTIPLY(z5, FIX_1_175875602);
|
|
|
550
|
|
|
551 tmp0 = z1 - z4;
|
|
|
552 tmp1 = z2 + z4;
|
|
|
553 tmp2 += z5;
|
|
|
554 tmp3 += z5;
|
|
|
555 } else {
|
|
|
556 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
|
|
|
557 tmp0 = MULTIPLY(-d3, FIX_0_785694958);
|
|
|
558 tmp1 = MULTIPLY(-d3, FIX_1_387039845);
|
|
|
559 tmp2 = MULTIPLY(-d3, FIX_0_275899380);
|
|
|
560 tmp3 = MULTIPLY(d3, FIX_1_175875602);
|
|
|
561 }
|
|
|
562 } else {
|
|
|
563 if (d1) {
|
|
|
564 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
|
|
|
565 tmp0 = MULTIPLY(d1, FIX_0_275899380);
|
|
|
566 tmp1 = MULTIPLY(d1, FIX_0_785694958);
|
|
|
567 tmp2 = MULTIPLY(d1, FIX_1_175875602);
|
|
|
568 tmp3 = MULTIPLY(d1, FIX_1_387039845);
|
|
|
569 } else {
|
|
|
570 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
|
|
|
571 tmp0 = tmp1 = tmp2 = tmp3 = 0;
|
|
|
572 }
|
|
|
573 }
|
|
|
574 }
|
|
|
575 }
|
|
|
576 }
|
|
|
577 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
|
|
578
|
|
|
579 dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
|
|
|
580 dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
|
|
|
581 dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
|
|
|
582 dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
|
|
|
583 dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
|
|
|
584 dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
|
|
|
585 dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
|
|
|
586 dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
|
|
|
587
|
|
|
588 dataptr += DCTSIZE; /* advance pointer to next row */
|
|
|
589 }
|
|
|
590
|
|
|
591 /* Pass 2: process columns. */
|
|
|
592 /* Note that we must descale the results by a factor of 8 == 2**3, */
|
|
|
593 /* and also undo the PASS1_BITS scaling. */
|
|
|
594
|
|
|
595 dataptr = data;
|
|
|
596 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
|
|
|
597 /* Columns of zeroes can be exploited in the same way as we did with rows.
|
|
|
598 * However, the row calculation has created many nonzero AC terms, so the
|
|
|
599 * simplification applies less often (typically 5% to 10% of the time).
|
|
|
600 * On machines with very fast multiplication, it's possible that the
|
|
|
601 * test takes more time than it's worth. In that case this section
|
|
|
602 * may be commented out.
|
|
|
603 */
|
|
|
604
|
|
|
605 d0 = dataptr[DCTSIZE*0];
|
|
|
606 d1 = dataptr[DCTSIZE*1];
|
|
|
607 d2 = dataptr[DCTSIZE*2];
|
|
|
608 d3 = dataptr[DCTSIZE*3];
|
|
|
609 d4 = dataptr[DCTSIZE*4];
|
|
|
610 d5 = dataptr[DCTSIZE*5];
|
|
|
611 d6 = dataptr[DCTSIZE*6];
|
|
|
612 d7 = dataptr[DCTSIZE*7];
|
|
|
613
|
|
|
614 /* Even part: reverse the even part of the forward DCT. */
|
|
|
615 /* The rotator is sqrt(2)*c(-6). */
|
|
|
616 if (d6) {
|
|
|
617 if (d2) {
|
|
|
618 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
|
|
|
619 z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
|
|
|
620 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
|
|
|
621 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
|
|
|
622
|
|
|
623 tmp0 = (d0 + d4) << CONST_BITS;
|
|
|
624 tmp1 = (d0 - d4) << CONST_BITS;
|
|
|
625
|
|
|
626 tmp10 = tmp0 + tmp3;
|
|
|
627 tmp13 = tmp0 - tmp3;
|
|
|
628 tmp11 = tmp1 + tmp2;
|
|
|
629 tmp12 = tmp1 - tmp2;
|
|
|
630 } else {
|
|
|
631 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
|
|
|
632 tmp2 = MULTIPLY(-d6, FIX_1_306562965);
|
|
|
633 tmp3 = MULTIPLY(d6, FIX_0_541196100);
|
|
|
634
|
|
|
635 tmp0 = (d0 + d4) << CONST_BITS;
|
|
|
636 tmp1 = (d0 - d4) << CONST_BITS;
|
|
|
637
|
|
|
638 tmp10 = tmp0 + tmp3;
|
|
|
639 tmp13 = tmp0 - tmp3;
|
|
|
640 tmp11 = tmp1 + tmp2;
|
|
|
641 tmp12 = tmp1 - tmp2;
|
|
|
642 }
|
|
|
643 } else {
|
|
|
644 if (d2) {
|
|
|
645 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
|
|
|
646 tmp2 = MULTIPLY(d2, FIX_0_541196100);
|
|
|
647 tmp3 = MULTIPLY(d2, FIX_1_306562965);
|
|
|
648
|
|
|
649 tmp0 = (d0 + d4) << CONST_BITS;
|
|
|
650 tmp1 = (d0 - d4) << CONST_BITS;
|
|
|
651
|
|
|
652 tmp10 = tmp0 + tmp3;
|
|
|
653 tmp13 = tmp0 - tmp3;
|
|
|
654 tmp11 = tmp1 + tmp2;
|
|
|
655 tmp12 = tmp1 - tmp2;
|
|
|
656 } else {
|
|
|
657 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
|
|
|
658 tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
|
|
|
659 tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
|
|
|
660 }
|
|
|
661 }
|
|
|
662
|
|
|
663 /* Odd part per figure 8; the matrix is unitary and hence its
|
|
|
664 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
|
|
|
665 */
|
|
|
666 if (d7) {
|
|
|
667 if (d5) {
|
|
|
668 if (d3) {
|
|
|
669 if (d1) {
|
|
|
670 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
|
|
|
671 z1 = d7 + d1;
|
|
|
672 z2 = d5 + d3;
|
|
|
673 z3 = d7 + d3;
|
|
|
674 z4 = d5 + d1;
|
|
|
675 z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
|
|
|
676
|
|
|
677 tmp0 = MULTIPLY(d7, FIX_0_298631336);
|
|
|
678 tmp1 = MULTIPLY(d5, FIX_2_053119869);
|
|
|
679 tmp2 = MULTIPLY(d3, FIX_3_072711026);
|
|
|
680 tmp3 = MULTIPLY(d1, FIX_1_501321110);
|
|
|
681 z1 = MULTIPLY(-z1, FIX_0_899976223);
|
|
|
682 z2 = MULTIPLY(-z2, FIX_2_562915447);
|
|
|
683 z3 = MULTIPLY(-z3, FIX_1_961570560);
|
|
|
684 z4 = MULTIPLY(-z4, FIX_0_390180644);
|
|
|
685
|
|
|
686 z3 += z5;
|
|
|
687 z4 += z5;
|
|
|
688
|
|
|
689 tmp0 += z1 + z3;
|
|
|
690 tmp1 += z2 + z4;
|
|
|
691 tmp2 += z2 + z3;
|
|
|
692 tmp3 += z1 + z4;
|
|
|
693 } else {
|
|
|
694 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
|
|
|
695 z1 = d7;
|
|
|
696 z2 = d5 + d3;
|
|
|
697 z3 = d7 + d3;
|
|
|
698 z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
|
|
|
699
|
|
|
700 tmp0 = MULTIPLY(d7, FIX_0_298631336);
|
|
|
701 tmp1 = MULTIPLY(d5, FIX_2_053119869);
|
|
|
702 tmp2 = MULTIPLY(d3, FIX_3_072711026);
|
|
|
703 z1 = MULTIPLY(-d7, FIX_0_899976223);
|
|
|
704 z2 = MULTIPLY(-z2, FIX_2_562915447);
|
|
|
705 z3 = MULTIPLY(-z3, FIX_1_961570560);
|
|
|
706 z4 = MULTIPLY(-d5, FIX_0_390180644);
|
|
|
707
|
|
|
708 z3 += z5;
|
|
|
709 z4 += z5;
|
|
|
710
|
|
|
711 tmp0 += z1 + z3;
|
|
|
712 tmp1 += z2 + z4;
|
|
|
713 tmp2 += z2 + z3;
|
|
|
714 tmp3 = z1 + z4;
|
|
|
715 }
|
|
|
716 } else {
|
|
|
717 if (d1) {
|
|
|
718 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
|
|
|
719 z1 = d7 + d1;
|
|
|
720 z2 = d5;
|
|
|
721 z3 = d7;
|
|
|
722 z4 = d5 + d1;
|
|
|
723 z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
|
|
|
724
|
|
|
725 tmp0 = MULTIPLY(d7, FIX_0_298631336);
|
|
|
726 tmp1 = MULTIPLY(d5, FIX_2_053119869);
|
|
|
727 tmp3 = MULTIPLY(d1, FIX_1_501321110);
|
|
|
728 z1 = MULTIPLY(-z1, FIX_0_899976223);
|
|
|
729 z2 = MULTIPLY(-d5, FIX_2_562915447);
|
|
|
730 z3 = MULTIPLY(-d7, FIX_1_961570560);
|
|
|
731 z4 = MULTIPLY(-z4, FIX_0_390180644);
|
|
|
732
|
|
|
733 z3 += z5;
|
|
|
734 z4 += z5;
|
|
|
735
|
|
|
736 tmp0 += z1 + z3;
|
|
|
737 tmp1 += z2 + z4;
|
|
|
738 tmp2 = z2 + z3;
|
|
|
739 tmp3 += z1 + z4;
|
|
|
740 } else {
|
|
|
741 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
|
|
|
742 tmp0 = MULTIPLY(-d7, FIX_0_601344887);
|
|
|
743 z1 = MULTIPLY(-d7, FIX_0_899976223);
|
|
|
744 z3 = MULTIPLY(-d7, FIX_1_961570560);
|
|
|
745 tmp1 = MULTIPLY(-d5, FIX_0_509795579);
|
|
|
746 z2 = MULTIPLY(-d5, FIX_2_562915447);
|
|
|
747 z4 = MULTIPLY(-d5, FIX_0_390180644);
|
|
|
748 z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
|
|
|
749
|
|
|
750 z3 += z5;
|
|
|
751 z4 += z5;
|
|
|
752
|
|
|
753 tmp0 += z3;
|
|
|
754 tmp1 += z4;
|
|
|
755 tmp2 = z2 + z3;
|
|
|
756 tmp3 = z1 + z4;
|
|
|
757 }
|
|
|
758 }
|
|
|
759 } else {
|
|
|
760 if (d3) {
|
|
|
761 if (d1) {
|
|
|
762 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
|
|
|
763 z1 = d7 + d1;
|
|
|
764 z3 = d7 + d3;
|
|
|
765 z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
|
|
|
766
|
|
|
767 tmp0 = MULTIPLY(d7, FIX_0_298631336);
|
|
|
768 tmp2 = MULTIPLY(d3, FIX_3_072711026);
|
|
|
769 tmp3 = MULTIPLY(d1, FIX_1_501321110);
|
|
|
770 z1 = MULTIPLY(-z1, FIX_0_899976223);
|
|
|
771 z2 = MULTIPLY(-d3, FIX_2_562915447);
|
|
|
772 z3 = MULTIPLY(-z3, FIX_1_961570560);
|
|
|
773 z4 = MULTIPLY(-d1, FIX_0_390180644);
|
|
|
774
|
|
|
775 z3 += z5;
|
|
|
776 z4 += z5;
|
|
|
777
|
|
|
778 tmp0 += z1 + z3;
|
|
|
779 tmp1 = z2 + z4;
|
|
|
780 tmp2 += z2 + z3;
|
|
|
781 tmp3 += z1 + z4;
|
|
|
782 } else {
|
|
|
783 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
|
|
|
784 z3 = d7 + d3;
|
|
|
785
|
|
|
786 tmp0 = MULTIPLY(-d7, FIX_0_601344887);
|
|
|
787 z1 = MULTIPLY(-d7, FIX_0_899976223);
|
|
|
788 tmp2 = MULTIPLY(d3, FIX_0_509795579);
|
|
|
789 z2 = MULTIPLY(-d3, FIX_2_562915447);
|
|
|
790 z5 = MULTIPLY(z3, FIX_1_175875602);
|
|
|
791 z3 = MULTIPLY(-z3, FIX_0_785694958);
|
|
|
792
|
|
|
793 tmp0 += z3;
|
|
|
794 tmp1 = z2 + z5;
|
|
|
795 tmp2 += z3;
|
|
|
796 tmp3 = z1 + z5;
|
|
|
797 }
|
|
|
798 } else {
|
|
|
799 if (d1) {
|
|
|
800 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
|
|
|
801 z1 = d7 + d1;
|
|
|
802 z5 = MULTIPLY(z1, FIX_1_175875602);
|
|
|
803
|
|
|
804 z1 = MULTIPLY(z1, FIX_0_275899380);
|
|
|
805 z3 = MULTIPLY(-d7, FIX_1_961570560);
|
|
|
806 tmp0 = MULTIPLY(-d7, FIX_1_662939225);
|
|
|
807 z4 = MULTIPLY(-d1, FIX_0_390180644);
|
|
|
808 tmp3 = MULTIPLY(d1, FIX_1_111140466);
|
|
|
809
|
|
|
810 tmp0 += z1;
|
|
|
811 tmp1 = z4 + z5;
|
|
|
812 tmp2 = z3 + z5;
|
|
|
813 tmp3 += z1;
|
|
|
814 } else {
|
|
|
815 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
|
|
|
816 tmp0 = MULTIPLY(-d7, FIX_1_387039845);
|
|
|
817 tmp1 = MULTIPLY(d7, FIX_1_175875602);
|
|
|
818 tmp2 = MULTIPLY(-d7, FIX_0_785694958);
|
|
|
819 tmp3 = MULTIPLY(d7, FIX_0_275899380);
|
|
|
820 }
|
|
|
821 }
|
|
|
822 }
|
|
|
823 } else {
|
|
|
824 if (d5) {
|
|
|
825 if (d3) {
|
|
|
826 if (d1) {
|
|
|
827 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
|
|
|
828 z2 = d5 + d3;
|
|
|
829 z4 = d5 + d1;
|
|
|
830 z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
|
|
|
831
|
|
|
832 tmp1 = MULTIPLY(d5, FIX_2_053119869);
|
|
|
833 tmp2 = MULTIPLY(d3, FIX_3_072711026);
|
|
|
834 tmp3 = MULTIPLY(d1, FIX_1_501321110);
|
|
|
835 z1 = MULTIPLY(-d1, FIX_0_899976223);
|
|
|
836 z2 = MULTIPLY(-z2, FIX_2_562915447);
|
|
|
837 z3 = MULTIPLY(-d3, FIX_1_961570560);
|
|
|
838 z4 = MULTIPLY(-z4, FIX_0_390180644);
|
|
|
839
|
|
|
840 z3 += z5;
|
|
|
841 z4 += z5;
|
|
|
842
|
|
|
843 tmp0 = z1 + z3;
|
|
|
844 tmp1 += z2 + z4;
|
|
|
845 tmp2 += z2 + z3;
|
|
|
846 tmp3 += z1 + z4;
|
|
|
847 } else {
|
|
|
848 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
|
|
|
849 z2 = d5 + d3;
|
|
|
850
|
|
|
851 z5 = MULTIPLY(z2, FIX_1_175875602);
|
|
|
852 tmp1 = MULTIPLY(d5, FIX_1_662939225);
|
|
|
853 z4 = MULTIPLY(-d5, FIX_0_390180644);
|
|
|
854 z2 = MULTIPLY(-z2, FIX_1_387039845);
|
|
|
855 tmp2 = MULTIPLY(d3, FIX_1_111140466);
|
|
|
856 z3 = MULTIPLY(-d3, FIX_1_961570560);
|
|
|
857
|
|
|
858 tmp0 = z3 + z5;
|
|
|
859 tmp1 += z2;
|
|
|
860 tmp2 += z2;
|
|
|
861 tmp3 = z4 + z5;
|
|
|
862 }
|
|
|
863 } else {
|
|
|
864 if (d1) {
|
|
|
865 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
|
|
|
866 z4 = d5 + d1;
|
|
|
867
|
|
|
868 z5 = MULTIPLY(z4, FIX_1_175875602);
|
|
|
869 z1 = MULTIPLY(-d1, FIX_0_899976223);
|
|
|
870 tmp3 = MULTIPLY(d1, FIX_0_601344887);
|
|
|
871 tmp1 = MULTIPLY(-d5, FIX_0_509795579);
|
|
|
872 z2 = MULTIPLY(-d5, FIX_2_562915447);
|
|
|
873 z4 = MULTIPLY(z4, FIX_0_785694958);
|
|
|
874
|
|
|
875 tmp0 = z1 + z5;
|
|
|
876 tmp1 += z4;
|
|
|
877 tmp2 = z2 + z5;
|
|
|
878 tmp3 += z4;
|
|
|
879 } else {
|
|
|
880 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
|
|
|
881 tmp0 = MULTIPLY(d5, FIX_1_175875602);
|
|
|
882 tmp1 = MULTIPLY(d5, FIX_0_275899380);
|
|
|
883 tmp2 = MULTIPLY(-d5, FIX_1_387039845);
|
|
|
884 tmp3 = MULTIPLY(d5, FIX_0_785694958);
|
|
|
885 }
|
|
|
886 }
|
|
|
887 } else {
|
|
|
888 if (d3) {
|
|
|
889 if (d1) {
|
|
|
890 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
|
|
|
891 z5 = d1 + d3;
|
|
|
892 tmp3 = MULTIPLY(d1, FIX_0_211164243);
|
|
|
893 tmp2 = MULTIPLY(-d3, FIX_1_451774981);
|
|
|
894 z1 = MULTIPLY(d1, FIX_1_061594337);
|
|
|
895 z2 = MULTIPLY(-d3, FIX_2_172734803);
|
|
|
896 z4 = MULTIPLY(z5, FIX_0_785694958);
|
|
|
897 z5 = MULTIPLY(z5, FIX_1_175875602);
|
|
|
898
|
|
|
899 tmp0 = z1 - z4;
|
|
|
900 tmp1 = z2 + z4;
|
|
|
901 tmp2 += z5;
|
|
|
902 tmp3 += z5;
|
|
|
903 } else {
|
|
|
904 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
|
|
|
905 tmp0 = MULTIPLY(-d3, FIX_0_785694958);
|
|
|
906 tmp1 = MULTIPLY(-d3, FIX_1_387039845);
|
|
|
907 tmp2 = MULTIPLY(-d3, FIX_0_275899380);
|
|
|
908 tmp3 = MULTIPLY(d3, FIX_1_175875602);
|
|
|
909 }
|
|
|
910 } else {
|
|
|
911 if (d1) {
|
|
|
912 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
|
|
|
913 tmp0 = MULTIPLY(d1, FIX_0_275899380);
|
|
|
914 tmp1 = MULTIPLY(d1, FIX_0_785694958);
|
|
|
915 tmp2 = MULTIPLY(d1, FIX_1_175875602);
|
|
|
916 tmp3 = MULTIPLY(d1, FIX_1_387039845);
|
|
|
917 } else {
|
|
|
918 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
|
|
|
919 tmp0 = tmp1 = tmp2 = tmp3 = 0;
|
|
|
920 }
|
|
|
921 }
|
|
|
922 }
|
|
|
923 }
|
|
|
924
|
|
|
925 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
|
|
926
|
|
|
927 dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3,
|
|
|
928 CONST_BITS+PASS1_BITS+3);
|
|
|
929 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3,
|
|
|
930 CONST_BITS+PASS1_BITS+3);
|
|
|
931 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2,
|
|
|
932 CONST_BITS+PASS1_BITS+3);
|
|
|
933 dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2,
|
|
|
934 CONST_BITS+PASS1_BITS+3);
|
|
|
935 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1,
|
|
|
936 CONST_BITS+PASS1_BITS+3);
|
|
|
937 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1,
|
|
|
938 CONST_BITS+PASS1_BITS+3);
|
|
|
939 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0,
|
|
|
940 CONST_BITS+PASS1_BITS+3);
|
|
|
941 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0,
|
|
|
942 CONST_BITS+PASS1_BITS+3);
|
|
|
943
|
|
|
944 dataptr++; /* advance pointer to next column */
|
|
|
945 }
|
|
|
946 }
|
|
|
947
|
|
|
948 #undef DCTSIZE
|
|
|
949 #define DCTSIZE 4
|
|
|
950 #define DCTSTRIDE 8
|
|
|
951
|
|
|
952 void j_rev_dct4(DCTBLOCK data)
|
|
|
953 {
|
|
|
954 int32_t tmp0, tmp1, tmp2, tmp3;
|
|
|
955 int32_t tmp10, tmp11, tmp12, tmp13;
|
|
|
956 int32_t z1;
|
|
|
957 int32_t d0, d2, d4, d6;
|
|
|
958 register DCTELEM *dataptr;
|
|
|
959 int rowctr;
|
|
|
960
|
|
|
961 /* Pass 1: process rows. */
|
|
|
962 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
|
|
|
963 /* furthermore, we scale the results by 2**PASS1_BITS. */
|
|
|
964
|
|
|
965 data[0] += 4;
|
|
|
966
|
|
|
967 dataptr = data;
|
|
|
968
|
|
|
969 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
|
|
|
970 /* Due to quantization, we will usually find that many of the input
|
|
|
971 * coefficients are zero, especially the AC terms. We can exploit this
|
|
|
972 * by short-circuiting the IDCT calculation for any row in which all
|
|
|
973 * the AC terms are zero. In that case each output is equal to the
|
|
|
974 * DC coefficient (with scale factor as needed).
|
|
|
975 * With typical images and quantization tables, half or more of the
|
|
|
976 * row DCT calculations can be simplified this way.
|
|
|
977 */
|
|
|
978
|
|
|
979 register int *idataptr = (int*)dataptr;
|
|
|
980
|
|
|
981 d0 = dataptr[0];
|
|
|
982 d2 = dataptr[1];
|
|
|
983 d4 = dataptr[2];
|
|
|
984 d6 = dataptr[3];
|
|
|
985
|
|
|
986 if ((d2 | d4 | d6) == 0) {
|
|
|
987 /* AC terms all zero */
|
|
|
988 if (d0) {
|
|
|
989 /* Compute a 32 bit value to assign. */
|
|
|
990 DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS);
|
|
|
991 register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
|
|
|
992
|
|
|
993 idataptr[0] = v;
|
|
|
994 idataptr[1] = v;
|
|
|
995 }
|
|
|
996
|
|
|
997 dataptr += DCTSTRIDE; /* advance pointer to next row */
|
|
|
998 continue;
|
|
|
999 }
|
|
|
1000
|
|
|
1001 /* Even part: reverse the even part of the forward DCT. */
|
|
|
1002 /* The rotator is sqrt(2)*c(-6). */
|
|
|
1003 if (d6) {
|
|
|
1004 if (d2) {
|
|
|
1005 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
|
|
|
1006 z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
|
|
|
1007 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
|
|
|
1008 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
|
|
|
1009
|
|
|
1010 tmp0 = (d0 + d4) << CONST_BITS;
|
|
|
1011 tmp1 = (d0 - d4) << CONST_BITS;
|
|
|
1012
|
|
|
1013 tmp10 = tmp0 + tmp3;
|
|
|
1014 tmp13 = tmp0 - tmp3;
|
|
|
1015 tmp11 = tmp1 + tmp2;
|
|
|
1016 tmp12 = tmp1 - tmp2;
|
|
|
1017 } else {
|
|
|
1018 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
|
|
|
1019 tmp2 = MULTIPLY(-d6, FIX_1_306562965);
|
|
|
1020 tmp3 = MULTIPLY(d6, FIX_0_541196100);
|
|
|
1021
|
|
|
1022 tmp0 = (d0 + d4) << CONST_BITS;
|
|
|
1023 tmp1 = (d0 - d4) << CONST_BITS;
|
|
|
1024
|
|
|
1025 tmp10 = tmp0 + tmp3;
|
|
|
1026 tmp13 = tmp0 - tmp3;
|
|
|
1027 tmp11 = tmp1 + tmp2;
|
|
|
1028 tmp12 = tmp1 - tmp2;
|
|
|
1029 }
|
|
|
1030 } else {
|
|
|
1031 if (d2) {
|
|
|
1032 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
|
|
|
1033 tmp2 = MULTIPLY(d2, FIX_0_541196100);
|
|
|
1034 tmp3 = MULTIPLY(d2, FIX_1_306562965);
|
|
|
1035
|
|
|
1036 tmp0 = (d0 + d4) << CONST_BITS;
|
|
|
1037 tmp1 = (d0 - d4) << CONST_BITS;
|
|
|
1038
|
|
|
1039 tmp10 = tmp0 + tmp3;
|
|
|
1040 tmp13 = tmp0 - tmp3;
|
|
|
1041 tmp11 = tmp1 + tmp2;
|
|
|
1042 tmp12 = tmp1 - tmp2;
|
|
|
1043 } else {
|
|
|
1044 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
|
|
|
1045 tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
|
|
|
1046 tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
|
|
|
1047 }
|
|
|
1048 }
|
|
|
1049
|
|
|
1050 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
|
|
1051
|
|
|
1052 dataptr[0] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
|
|
|
1053 dataptr[1] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
|
|
|
1054 dataptr[2] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
|
|
|
1055 dataptr[3] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
|
|
|
1056
|
|
|
1057 dataptr += DCTSTRIDE; /* advance pointer to next row */
|
|
|
1058 }
|
|
|
1059
|
|
|
1060 /* Pass 2: process columns. */
|
|
|
1061 /* Note that we must descale the results by a factor of 8 == 2**3, */
|
|
|
1062 /* and also undo the PASS1_BITS scaling. */
|
|
|
1063
|
|
|
1064 dataptr = data;
|
|
|
1065 for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
|
|
|
1066 /* Columns of zeroes can be exploited in the same way as we did with rows.
|
|
|
1067 * However, the row calculation has created many nonzero AC terms, so the
|
|
|
1068 * simplification applies less often (typically 5% to 10% of the time).
|
|
|
1069 * On machines with very fast multiplication, it's possible that the
|
|
|
1070 * test takes more time than it's worth. In that case this section
|
|
|
1071 * may be commented out.
|
|
|
1072 */
|
|
|
1073
|
|
|
1074 d0 = dataptr[DCTSTRIDE*0];
|
|
|
1075 d2 = dataptr[DCTSTRIDE*1];
|
|
|
1076 d4 = dataptr[DCTSTRIDE*2];
|
|
|
1077 d6 = dataptr[DCTSTRIDE*3];
|
|
|
1078
|
|
|
1079 /* Even part: reverse the even part of the forward DCT. */
|
|
|
1080 /* The rotator is sqrt(2)*c(-6). */
|
|
|
1081 if (d6) {
|
|
|
1082 if (d2) {
|
|
|
1083 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
|
|
|
1084 z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
|
|
|
1085 tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
|
|
|
1086 tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
|
|
|
1087
|
|
|
1088 tmp0 = (d0 + d4) << CONST_BITS;
|
|
|
1089 tmp1 = (d0 - d4) << CONST_BITS;
|
|
|
1090
|
|
|
1091 tmp10 = tmp0 + tmp3;
|
|
|
1092 tmp13 = tmp0 - tmp3;
|
|
|
1093 tmp11 = tmp1 + tmp2;
|
|
|
1094 tmp12 = tmp1 - tmp2;
|
|
|
1095 } else {
|
|
|
1096 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
|
|
|
1097 tmp2 = MULTIPLY(-d6, FIX_1_306562965);
|
|
|
1098 tmp3 = MULTIPLY(d6, FIX_0_541196100);
|
|
|
1099
|
|
|
1100 tmp0 = (d0 + d4) << CONST_BITS;
|
|
|
1101 tmp1 = (d0 - d4) << CONST_BITS;
|
|
|
1102
|
|
|
1103 tmp10 = tmp0 + tmp3;
|
|
|
1104 tmp13 = tmp0 - tmp3;
|
|
|
1105 tmp11 = tmp1 + tmp2;
|
|
|
1106 tmp12 = tmp1 - tmp2;
|
|
|
1107 }
|
|
|
1108 } else {
|
|
|
1109 if (d2) {
|
|
|
1110 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
|
|
|
1111 tmp2 = MULTIPLY(d2, FIX_0_541196100);
|
|
|
1112 tmp3 = MULTIPLY(d2, FIX_1_306562965);
|
|
|
1113
|
|
|
1114 tmp0 = (d0 + d4) << CONST_BITS;
|
|
|
1115 tmp1 = (d0 - d4) << CONST_BITS;
|
|
|
1116
|
|
|
1117 tmp10 = tmp0 + tmp3;
|
|
|
1118 tmp13 = tmp0 - tmp3;
|
|
|
1119 tmp11 = tmp1 + tmp2;
|
|
|
1120 tmp12 = tmp1 - tmp2;
|
|
|
1121 } else {
|
|
|
1122 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
|
|
|
1123 tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
|
|
|
1124 tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
|
|
|
1125 }
|
|
|
1126 }
|
|
|
1127
|
|
|
1128 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
|
|
1129
|
|
|
1130 dataptr[DCTSTRIDE*0] = tmp10 >> (CONST_BITS+PASS1_BITS+3);
|
|
|
1131 dataptr[DCTSTRIDE*1] = tmp11 >> (CONST_BITS+PASS1_BITS+3);
|
|
|
1132 dataptr[DCTSTRIDE*2] = tmp12 >> (CONST_BITS+PASS1_BITS+3);
|
|
|
1133 dataptr[DCTSTRIDE*3] = tmp13 >> (CONST_BITS+PASS1_BITS+3);
|
|
|
1134
|
|
|
1135 dataptr++; /* advance pointer to next column */
|
|
|
1136 }
|
|
|
1137 }
|
|
|
1138
|
|
|
1139 void j_rev_dct2(DCTBLOCK data){
|
|
|
1140 int d00, d01, d10, d11;
|
|
|
1141
|
|
|
1142 data[0] += 4;
|
|
|
1143 d00 = data[0+0*DCTSTRIDE] + data[1+0*DCTSTRIDE];
|
|
|
1144 d01 = data[0+0*DCTSTRIDE] - data[1+0*DCTSTRIDE];
|
|
|
1145 d10 = data[0+1*DCTSTRIDE] + data[1+1*DCTSTRIDE];
|
|
|
1146 d11 = data[0+1*DCTSTRIDE] - data[1+1*DCTSTRIDE];
|
|
|
1147
|
|
|
1148 data[0+0*DCTSTRIDE]= (d00 + d10)>>3;
|
|
|
1149 data[1+0*DCTSTRIDE]= (d01 + d11)>>3;
|
|
|
1150 data[0+1*DCTSTRIDE]= (d00 - d10)>>3;
|
|
|
1151 data[1+1*DCTSTRIDE]= (d01 - d11)>>3;
|
|
|
1152 }
|
|
|
1153
|
|
|
1154 void j_rev_dct1(DCTBLOCK data){
|
|
|
1155 data[0] = (data[0] + 4)>>3;
|
|
|
1156 }
|
|
|
1157
|
|
|
1158 #undef FIX
|
|
|
1159 #undef CONST_BITS
|